八、可以扩展我们的记号到有两个参数n和m的情形,其中的n和m可以按不同速率独立地趋于无穷。对于给定的函数g(n, m),用O(g(n, m))来表示以下函数集:

O(g(n, m)) =

对Ω(g(n, m))和θ(g(n, m))给出相应的定义。

文心一言:



chatgpt:

类比于单个参数的情形,我们可以定义类似的记号:

  • O(g(n, m)): 表示一个函数集合,其中的函数在 n 和 m 分别趋向正无穷时,上界为 g(n, m) 的某个常数倍。
  • Ω(g(n, m)): 表示一个函数集合,其中的函数在 n 和 m 分别趋向正无穷时,下界为 g(n, m) 的某个常数倍。
  • θ(g(n, m)): 表示一个函数集合,其中的函数在 n 和 m 分别趋向正无穷时,既存在一个上界为 g(n, m) 的某个常数倍,也存在一个下界为 g(n, m) 的某个常数倍。

具体地说,对于 f(n, m) 属于 O(g(n, m)),意味着存在正常量 c 和 N,使得当 n>=N 或 m>=M 时,f(n, m) ≤ c * g(n, m)。类似地,对于 f(n, m) 属于 Ω(g(n, m)),意味着存在正常量 c 和 N,使得当 n>=N 或 m>=M 时,f(n, m) ≥ c * g(n, m)。对于 f(n, m) 属于 θ(g(n, m)),意味着存在正常量 c1、c2 和 N,使得当 n>=N 或 m>=M 时,c1 * g(n, m) ≤ f(n, m) ≤ c2 * g(n, m)。

一、证明:若f(n)和g(n)是单调递增的函数,则函数f(n)+g(n)和f(g(n))也是单调递增的,此外,若f(n)和g(n)是非负的,则f(n)·g(n)是单调递增的。

文心一言:

chatgpt:

首先证明 f(n)+g(n) 是单调递增的:

设 n1 < n2,由于 f 和 g 都是单调递增的函数,则有 f(n1) ≤ f(n2) 和 g(n1) ≤ g(n2),两边分别加起来得到 f(n1) + g(n1) ≤ f(n2) + g(n2),即 f(n) + g(n) 也是单调递增的。

接下来证明 f(g(n)) 是单调递增的:

设 m1 < m2,由于 g 是单调递增的函数,则有 g(m1) ≤ g(m2),又因为 f 是单调递增的函数,所以有 f(g(m1)) ≤ f(g(m2))。因此 f(g(n)) 也是单调递增的。

最后证明 f(n)·g(n) 是单调递增的:

设 n1 < n2,由于 f 和 g 都是非负单调递增的函数,则有 f(n1) ≤ f(n2) 和 g(n1) ≤ g(n2),两边相乘得到 f(n1)·g(n1) ≤ f(n2)·g(n2),即 f(n)·g(n) 也是单调递增的。

综上所述,根据以上证明,当 f(n) 和 g(n) 均为单调递增的函数时,f(n)+g(n)、f(g(n))、f(n)·g(n) 均为单调递增的函数。

文心一言 VS chatgpt (13)-- 算法导论3.1 8题 3.2 1题的更多相关文章

  1. 【个人首测】百度文心一言 VS ChatGPT GPT-4

    昨天我写了一篇文章GPT-4牛是牛,但这几天先别急,文中我测试了用GPT-4回答ChatGPT 3.5 和 Notion AI的问题,大家期待的图片输入也没有出现. 昨天下午百度发布了文心一言,对标C ...

  2. 获取了文心一言的内测及与其ChatGPT、GPT-4 对比结果

    百度在3月16日召开了关于文心一言(知识增强大语言模型)的发布会,但是会上并没现场展示demo.如果要测试的文心一言 也要获取邀请码,才能进行测试的. 我这边通过预约得到了邀请码,大概是在3月17日晚 ...

  3. 阿里版ChatGPT:通义千问pk文心一言

    随着 ChatGPT 热潮卷起来,百度发布了文心一言.Google 发布了 Bard,「阿里云」官方终于也宣布了,旗下的 AI 大模型"通义千问"正式开启测试! 申请地址:http ...

  4. 【对比】文心一言对飚ChatGPT实操对比体验

    前言 缘由 百度[文心一言]体验申请通过 本狗中午干饭时,天降短信,告知可以体验文心一言,苦等一个月的实操终于到来.心中这好奇的对比心理油然而生,到底是老美的[ChatGPT]厉害,还是咱度娘的[文心 ...

  5. 文心一言,通营销之学,成一家之言,百度人工智能AI大数据模型文心一言Python3.10接入

    "文心"取自<文心雕龙>一书的开篇,作者刘勰在书中引述了一个古代典故:春秋时期,鲁国有一位名叫孔文子的大夫,他在学问上非常有造诣,但是他的儿子却不学无术,孔文子非常痛心 ...

  6. 百度生成式AI产品文心一言邀你体验AI创作新奇迹:百度CEO李彦宏详细透露三大产业将会带来机遇(文末附文心一言个人用户体验测试邀请码获取方法,亲测有效)

    目录 中国版ChatGPT上线发布 强大中文理解能力 智能文学创作.商业文案创作 图片.视频智能生成 中国生成式AI三大产业机会 新型云计算公司 行业模型精调公司 应用服务提供商 总结 获取文心一言邀 ...

  7. 【转】最长回文子串的O(n)的Manacher算法

    Manacher算法 首先:大家都知道什么叫回文串吧,这个算法要解决的就是一个字符串中最长的回文子串有多长.这个算法可以在O(n)的时间复杂度内既线性时间复杂度的情况下,求出以每个字符为中心的最长回文 ...

  8. 文心大模型api使用

    文心大模型api使用 首先,我们要获取硅谷社区的连个key 复制两个api备用 获取Access Token 获取access_token示例代码 之后就会输出 作文创作 作文创作:作文创作接口基于文 ...

  9. 文心ERNIE-ViLG,你的免费插图画师

    你是否想拥有一个专属画师,免费为你的优美文字插上几幅优美的插图?如今依然实现 最近AI作画确实很火,在DALL-E和Imagen崭露头角之后,ERNIE-ViLG.Stable-Diffusion(S ...

  10. [算法导论]二叉查找树的实现 @ Python

    <算法导论>第三版的BST(二叉查找树)的实现: class Tree: def __init__(self): self.root = None # Definition for a b ...

随机推荐

  1. 网站下/.git/index查看

    遇见有些网站目录中存在 http://target.com/.git/index 由于index是二进制文件 下载回来本地查看 初始化 下载到.git目录 git checkout-index -a

  2. 在VS中C#工程操作Mysql数据库

    1.实现mysql数据库与VS的连接,需要安装两个插件,作者装的是mysql-connector-net-6.9.9.msi和 mysql-for-visualstudio-1.2.6.msi. 2. ...

  3. Pinia使用技巧

    vue2使用的vuex,是一个状态管理器,现在vue3出了最新的pinia,今年偿试一下. 首先是安装,这里要注意一下,有一个持久化插件,如果不用的话,页面一刷新,状态会消失. npm install ...

  4. 阿里云镜像创建Spring Boot工厂

    参考博客:https://blog.csdn.net/qq_40052237/article/details/115794368 http://start.aliyun.com

  5. 研发效能负责人/研发效能1号位 |DevOps负责人

    想要做好业务,老板们除了要梳理好公司级别的业务目标,公司的组织架构,还要搭个有产出的班子,也就是找负责人.建团队,让组织架构充实起来.搭班子最重要的就是把负责人找到,就是团队1号位的人.本文主要讲团队 ...

  6. 【备忘录】 主定理 Master Theorem (转载)

    备忘录 https://zhuanlan.zhihu.com/p/113406812

  7. (数据科学学习手札150)基于dask对geopandas进行并行加速

    本文示例代码已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 大家好我是费老师,geopandas作为我们非常 ...

  8. C++温故补缺(十九):atomic类

    atomic 参考:c++11 多线程(3)atomic 总结 - 简书.c++11 atomic Npgw的博客.C++11 并发指南系列 - Haippy - 博客园. atomic_flag a ...

  9. Hive 与 HBase 之间的区别和联系

    首先要知道 Hive 和 HBase 两者的区别,我们必须要知道两者的作用和在大数据中扮演的角色 概念 Hive 1.Hive 是 hadoop 数据仓库管理工具,严格来说,不是数据库,本身是不存储数 ...

  10. Lua基础语法学习笔记

    Lua是一门语言,我们可以使用一个库,可以在运行时去编译执行Lua中的代码,从而实现自己的内存中的数据和逻辑: 准备学习环境: 新建一个Lua项目目录,用来写我们的Lua代码: 进入目录,右键使用vs ...