八、可以扩展我们的记号到有两个参数n和m的情形,其中的n和m可以按不同速率独立地趋于无穷。对于给定的函数g(n, m),用O(g(n, m))来表示以下函数集:

O(g(n, m)) =

对Ω(g(n, m))和θ(g(n, m))给出相应的定义。

文心一言:



chatgpt:

类比于单个参数的情形,我们可以定义类似的记号:

  • O(g(n, m)): 表示一个函数集合,其中的函数在 n 和 m 分别趋向正无穷时,上界为 g(n, m) 的某个常数倍。
  • Ω(g(n, m)): 表示一个函数集合,其中的函数在 n 和 m 分别趋向正无穷时,下界为 g(n, m) 的某个常数倍。
  • θ(g(n, m)): 表示一个函数集合,其中的函数在 n 和 m 分别趋向正无穷时,既存在一个上界为 g(n, m) 的某个常数倍,也存在一个下界为 g(n, m) 的某个常数倍。

具体地说,对于 f(n, m) 属于 O(g(n, m)),意味着存在正常量 c 和 N,使得当 n>=N 或 m>=M 时,f(n, m) ≤ c * g(n, m)。类似地,对于 f(n, m) 属于 Ω(g(n, m)),意味着存在正常量 c 和 N,使得当 n>=N 或 m>=M 时,f(n, m) ≥ c * g(n, m)。对于 f(n, m) 属于 θ(g(n, m)),意味着存在正常量 c1、c2 和 N,使得当 n>=N 或 m>=M 时,c1 * g(n, m) ≤ f(n, m) ≤ c2 * g(n, m)。

一、证明:若f(n)和g(n)是单调递增的函数,则函数f(n)+g(n)和f(g(n))也是单调递增的,此外,若f(n)和g(n)是非负的,则f(n)·g(n)是单调递增的。

文心一言:

chatgpt:

首先证明 f(n)+g(n) 是单调递增的:

设 n1 < n2,由于 f 和 g 都是单调递增的函数,则有 f(n1) ≤ f(n2) 和 g(n1) ≤ g(n2),两边分别加起来得到 f(n1) + g(n1) ≤ f(n2) + g(n2),即 f(n) + g(n) 也是单调递增的。

接下来证明 f(g(n)) 是单调递增的:

设 m1 < m2,由于 g 是单调递增的函数,则有 g(m1) ≤ g(m2),又因为 f 是单调递增的函数,所以有 f(g(m1)) ≤ f(g(m2))。因此 f(g(n)) 也是单调递增的。

最后证明 f(n)·g(n) 是单调递增的:

设 n1 < n2,由于 f 和 g 都是非负单调递增的函数,则有 f(n1) ≤ f(n2) 和 g(n1) ≤ g(n2),两边相乘得到 f(n1)·g(n1) ≤ f(n2)·g(n2),即 f(n)·g(n) 也是单调递增的。

综上所述,根据以上证明,当 f(n) 和 g(n) 均为单调递增的函数时,f(n)+g(n)、f(g(n))、f(n)·g(n) 均为单调递增的函数。

文心一言 VS chatgpt (13)-- 算法导论3.1 8题 3.2 1题的更多相关文章

  1. 【个人首测】百度文心一言 VS ChatGPT GPT-4

    昨天我写了一篇文章GPT-4牛是牛,但这几天先别急,文中我测试了用GPT-4回答ChatGPT 3.5 和 Notion AI的问题,大家期待的图片输入也没有出现. 昨天下午百度发布了文心一言,对标C ...

  2. 获取了文心一言的内测及与其ChatGPT、GPT-4 对比结果

    百度在3月16日召开了关于文心一言(知识增强大语言模型)的发布会,但是会上并没现场展示demo.如果要测试的文心一言 也要获取邀请码,才能进行测试的. 我这边通过预约得到了邀请码,大概是在3月17日晚 ...

  3. 阿里版ChatGPT:通义千问pk文心一言

    随着 ChatGPT 热潮卷起来,百度发布了文心一言.Google 发布了 Bard,「阿里云」官方终于也宣布了,旗下的 AI 大模型"通义千问"正式开启测试! 申请地址:http ...

  4. 【对比】文心一言对飚ChatGPT实操对比体验

    前言 缘由 百度[文心一言]体验申请通过 本狗中午干饭时,天降短信,告知可以体验文心一言,苦等一个月的实操终于到来.心中这好奇的对比心理油然而生,到底是老美的[ChatGPT]厉害,还是咱度娘的[文心 ...

  5. 文心一言,通营销之学,成一家之言,百度人工智能AI大数据模型文心一言Python3.10接入

    "文心"取自<文心雕龙>一书的开篇,作者刘勰在书中引述了一个古代典故:春秋时期,鲁国有一位名叫孔文子的大夫,他在学问上非常有造诣,但是他的儿子却不学无术,孔文子非常痛心 ...

  6. 百度生成式AI产品文心一言邀你体验AI创作新奇迹:百度CEO李彦宏详细透露三大产业将会带来机遇(文末附文心一言个人用户体验测试邀请码获取方法,亲测有效)

    目录 中国版ChatGPT上线发布 强大中文理解能力 智能文学创作.商业文案创作 图片.视频智能生成 中国生成式AI三大产业机会 新型云计算公司 行业模型精调公司 应用服务提供商 总结 获取文心一言邀 ...

  7. 【转】最长回文子串的O(n)的Manacher算法

    Manacher算法 首先:大家都知道什么叫回文串吧,这个算法要解决的就是一个字符串中最长的回文子串有多长.这个算法可以在O(n)的时间复杂度内既线性时间复杂度的情况下,求出以每个字符为中心的最长回文 ...

  8. 文心大模型api使用

    文心大模型api使用 首先,我们要获取硅谷社区的连个key 复制两个api备用 获取Access Token 获取access_token示例代码 之后就会输出 作文创作 作文创作:作文创作接口基于文 ...

  9. 文心ERNIE-ViLG,你的免费插图画师

    你是否想拥有一个专属画师,免费为你的优美文字插上几幅优美的插图?如今依然实现 最近AI作画确实很火,在DALL-E和Imagen崭露头角之后,ERNIE-ViLG.Stable-Diffusion(S ...

  10. [算法导论]二叉查找树的实现 @ Python

    <算法导论>第三版的BST(二叉查找树)的实现: class Tree: def __init__(self): self.root = None # Definition for a b ...

随机推荐

  1. Linux centos7.6 安装 docker

    1.安装官网教程 https://docs.docker.com/engine/install/centos/ 2.卸载之前的 docker sudo yum remove docker \ dock ...

  2. mysql 死锁解决

    查看锁记录等待时间: SHOW VARIABLES LIKE 'innodb_lock_wait_timeout'; 把超时等待时间修改为5秒: SET innodb_lock_wait_timeou ...

  3. 10. XrmToolBox

    XrmToolBox是一个连接到MicrosoftDataverse的Windows应用程序,可以为任何在MicrosoftDataverse上构建的产品提供了简化定制.配置和操作任务的工具,包括Dy ...

  4. DRF的序列化器Serializer

    一 序列化器的作用 1. 序列化,序列化器会把模型对象转换成字典,经过视图中response对象以后变成json字符串 2. 反序列化,视图中request会把客户端发送过来的数据转换成字典,序列化器 ...

  5. RPA的价值和优势

    RPA机器人流程自动化(Robotic process automation):能够代替或者协助人类在计算机.RPA手机等数字化设备中完成重复性工作与任务. 只要预先设计好使用规则,RPA就可以模拟人 ...

  6. 矩形面积k次交 UVA - 11983

    算是模板题,会了面积交这个应该就会了,正常面积交分为覆盖1次以上,两次以上,这个就分为覆盖1到k次以上就行了. 这个题有点边界问题:是让你求覆盖的点,所以你可以假设一个1*1的正方向表示它的左下角被覆 ...

  7. Linux & 标准C语言学习 <DAY9_2>

    一.进程映像     程序:存储在磁盘上的可执行文件(二进制文件.脚本文件)     进程:正在系统中运行的程序     进程映像:进程的内存分布情况         text(代码段):       ...

  8. Simulink的MATLAB function使用

    note 2021-02-21 下面的文章来自我的公众号 yhm同学 note 2021-04-01 今天审稿,发现存在着一些我没有发现的错误,但是我不想修改了. 原文链接 https://mp.we ...

  9. 使用 zeromq与cppzmq 程序退出遇到的坑

    在使用zeromq 退出的时候还遇到一点坑,对于服务deaman(守护进程)化的进程可能会遇到这个问题. 现象: 这个问题导致的现象是服务一旦关闭(stop),就会 core dump,core du ...

  10. C#/VB.NET:如何将PDF转为PDF/A

    PDF/A是一种ISO标准的PDF文件格式版本,是为长期保存文件而设计的.它提供了一种工具,使电子文件在长时间之后依然以一种保留其外观的方式重现,而不管该文件是用什么工具和系统创建.储存或制作的.这种 ...