官方文档: https://radimrehurek.com/gensim/models/word2vec.html

1、训练模型定义

from gensim.models import word2vec

sentences = word2vec.Text8Corpus(r'user.txt')
word2vec = gensim.models.word2vec.Word2Vec(sentences, size=100, hs=1, min_count=1, window=3)
word2vec.save('word2vec_te')

参数解释:

1.sg=1是skip-gram算法,对低频词敏感;默认sg=0为CBOW算法。

2.size是输出词向量的维数,值太小会导致词映射因为冲突而影响结果,值太大则会耗内存并使算法计算变慢,一般值取为100到200之间。

3.window是句子中当前词与目标词之间的最大距离,3表示在目标词前看3-b个词,后面看b个词(b在0-3之间随机)。

4.min_count是对词进行过滤,频率小于min-count的单词则会被忽视,默认值为5。

5.negative和sample可根据训练结果进行微调,sample表示更高频率的词被随机下采样到所设置的阈值,默认值为1e-3。

6.hs=1表示层级softmax将会被使用,默认hs=0且negative不为0,则负采样将会被选择使用。

7.workers控制训练的并行,此参数只有在安装了Cpython后才有效,否则只能使用单核。

模型导出

word2vec = gensim.models.word2vec.Word2Vec(sentences(), size=256, window=10, min_count=64, sg=1, hs=1, iter=10, workers=25)
word2vec.save('word2vec_wx')


模型导入

model = gensim.models.Word2Vec.load('xxx/word2vec_wx')
pd.Series(model.most_similar(u'微信',topn = 360000))


gensim.models.Word2Vec.load的办法导入

其中的Numpy,可以用numpy.load:

import numpy
word_2x = numpy.load('xxx/word2vec_wx.wv.syn0.npy')

还有其他的导入方式:

from gensim.models.keyedvectors import KeyedVectors
word_vectors = KeyedVectors.load_word2vec_format('/tmp/vectors.txt', binary=False) # C text format
word_vectors = KeyedVectors.load_word2vec_format('/tmp/vectors.bin', binary=True) # C binary format

增量训练

model = gensim.models.Word2Vec.load('/tmp/mymodel')
model.train(more_sentences)

gensim训练好的word2vec使用

1、相似性

持数种单词相似度任务: 
相似词+相似系数(model.most_similar)、model.doesnt_match、model.similarity(两两相似)

model.most_similar(positive=['woman', 'king'], negative=['man'], topn=1)
[('queen', 0.50882536)] model.doesnt_match("breakfast cereal dinner lunch".split())
'cereal' model.similarity('woman', 'man')
.73723527


词向量

通过以下方式来得到单词的向量:

model['computer']  # raw NumPy vector of a word
array([-0.00449447, -0.00310097, 0.02421786, ...], dtype=float32)

可视化展示

import gensim
import numpy
from gensim.models import word2vec
from sklearn.decomposition import PCA
from matplotlib import pyplot
# import pandas as pd
pyplot.rcParams['font.sans-serif'] = ['SimHei'] # model = gensim.models.Word2Vec.load('word2vec_wx')
model = gensim.models.Word2Vec.load('word2vec_te')
# model.train(more_sentences)
# pd.Series(model.most_similar(u'微信'),topn=360000)
# for i in model.most_similar(u'教育'):
# print(i)
# for i in model['教育']:
# print(i) # 基于2d PCA拟合数据
X = model[model.wv.vocab]
pca = PCA(n_components=2)
result = pca.fit_transform(X)
# 可视化展示
pyplot.scatter(result[:, 0], result[:, 1])
words = list(model.wv.vocab)
for i, word in enumerate(words):
pyplot.annotate(word, xy=(result[i, 0], result[i, 1]))
pyplot.show()

  

 

gensim的更多相关文章

  1. doc2vec使用说明(二)gensim工具包 LabeledSentence

    欢迎交流,转载请注明出处. 本文介绍gensim工具包中,带标签(一个或者多个)的文档的doc2vec 的向量表示. 应用场景: 当每个文档不仅可以由文本信息表示,还有别的其他标签信息时,比如,在商品 ...

  2. Gensim LDA主题模型实验

    本文利用gensim进行LDA主题模型实验,第一部分是基于前文的wiki语料,第二部分是基于Sogou新闻语料. 1. 基于wiki语料的LDA实验 上一文得到了wiki纯文本已分词语料 wiki.z ...

  3. doc2vec使用说明(一)gensim工具包TaggedLineDocument

    gensim 是处理文本的很强大的工具包,基于python环境下: 1.gensim可以做什么? 它可以完成的任务,参加gensim 主页API中给出的介绍,链接如下: http://radimreh ...

  4. Gensim进阶教程:训练word2vec与doc2vec模型

    本篇博客是Gensim的进阶教程,主要介绍用于词向量建模的word2vec模型和用于长文本向量建模的doc2vec模型在Gensim中的实现. Word2vec Word2vec并不是一个模型--它其 ...

  5. doc2vec 利用gensim 生成文档向量

    利用gensim 直接生成文档向量 def gen_d2v_corpus(self, lines): with open("./data/ques2_result.txt", &q ...

  6. Paragraph Vector在Gensim和Tensorflow上的编写以及应用

    上一期讨论了Tensorflow以及Gensim的Word2Vec模型的建设以及对比.这一期,我们来看一看Mikolov的另一个模型,即Paragraph Vector模型.目前,Mikolov以及B ...

  7. Word2Vec在Tensorflow上的版本以及与Gensim之间的运行对比

    接昨天的博客,这篇随笔将会对本人运行Word2Vec算法时在Gensim以及Tensorflow的不同版本下的运行结果对比.在运行中,参数的调节以及迭代的决定本人并没有很好的经验,所以希望在展出运行的 ...

  8. 安装gensim

    安装了一天的gensim,其中因为版本不一致等等各种问题纠结了好久,现记录如下: 正确安装方式: 1. 安装python2.7 2. 下载Python Extension Packages对应版本的n ...

  9. 用gensim学习word2vec

    在word2vec原理篇中,我们对word2vec的两种模型CBOW和Skip-Gram,以及两种解法Hierarchical Softmax和Negative Sampling做了总结.这里我们就从 ...

  10. 【机器学习】使用gensim 的 doc2vec 实现文本相似度检测

    环境 Python3, gensim,jieba,numpy ,pandas 原理:文章转成向量,然后在计算两个向量的余弦值. Gensim gensim是一个python的自然语言处理库,能够将文档 ...

随机推荐

  1. 【PyCharm】PyCharm设置深色背景

    操作步骤 1.依次点击File->Settings->Appearance&Behavior->Appearance 2.选择Theme为Darcula

  2. ONOS中新建分支并关联远程库

    新建分支并关联远程库 廖雪峰学习git教程网站:(多人协作) https://www.liaoxuefeng.com/wiki/896043488029600/900375748016320 git远 ...

  3. postgresql 之修改psql log信息级别

    1.修改当前使用的postgresql.conf文件vim /var/lib/pgsql/10/data/postgresql.conf 2.vim 下使用\notice 找到待修改项 client_ ...

  4. AtCoder Beginner Contest 272 - G - Yet Another mod M

    随机 + 数论 题意 Submission #35524126 - AtCoder Beginner Contest 272 给一个长度为 \(n\;(1<=n<=5000)\) 的数组 ...

  5. CF1033E 题解

    题意 传送门 交互题,给定一个简单连通图,你可以询问一个点集 \(s\),返回其导出子图的边数.判断此图是否为二分图:若是,输出其中一部点的集合:否则输出任一个奇环.最多询问 \(20000\) 次. ...

  6. express的使用:路由、中间件(二)

    13.路由 1.express中的路由指客户端的请求与服务器处理函数间的映射关系 2.express中的路由由请求的类型,请求的URL地址,处理函数组成 3.app.METHOD(PATH,HANDL ...

  7. Pytest全局用例共用之conftest.py详解

    本文转自:https://blog.csdn.net/qq_36502272/article/details/102975467 一.'conftest特点: 1.可以跨.py文件调用,有多个.py文 ...

  8. Python面向对象编程——__init()__方法

    隐式基类object 每个python类都隐式继承object 全文代码实例实现:枚举扑克牌的花色和牌面值 一._init()__方法:对象初始化 显示而非隐式:__init()__应显示展示初始化变 ...

  9. mysql 设置外键约束SET FOREIGN_KEY_CHECKS=1

    问题描述:Mysql中如果表和表之间建立的外键约束,则无法删除表及修改表结构 解决方法: 在Mysql中取消外键约束: SET FOREIGN_KEY_CHECKS=0; 然后将原来表的数据导出到sq ...

  10. 一种基于Modbus的工业通信网关设计

    近年来,随着工业自动化领域的发展,工业现场对网络的可靠性及成本有极高的要求.传统基于串口的工业网关可以满足工业现场的应用,但却要付出高额成本.一种基于 ModBus 设计的工业通信网关就走进人们的眼中 ...