基于R的Bilibili视频数据建模及分析——预处理篇



0、写在前面

实验环境

  • Python版本:Python3.9
  • Pycharm版本:Pycharm2021.1.3
  • R版本:R-4.2.0
  • RStudio版本:RStudio-2021.09.2-382

该实验一共使用4个数据集,但文章讲述只涉及到一个数据集,并且对于每个数据集的分析,数据大小在110条左右

1、项目介绍

1.1 项目背景

Bilibili是国内比较热门的视频网站,本次实验是通过对Bilibili四个不同专区视频数据进行R使用的统计分析、聚类分析以及建模分析

1.2 数据来源

  • 数据来源于和鲸社区

https://www.heywhale.com/mw/dataset/62a45d284619d87b3b2b9147/file

数据字段描述说明

  • title:视频的标题
  • duration:视频时长
  • publisher:视频作者
  • descriptions:视频描述信息
  • pub_time:视频发布时间
  • view:视频播放量
  • comments:视频评论数
  • praise:视频点赞量
  • coins:视频投币数
  • favors:视频收藏数
  • forwarding:视频转发量

1.3 数据集展示

表单机游戏——游戏区:

2、数据预处理

2.1 删除空数据

整行数据为空,直接删除

2.2 增加id字段

在Excel每张表的首列添加id字段,
预处理后数据展示:

2.3 处理数值字段

对于view,comments,praise,coins,favors,forwarding这些数值型字段,原始数据中,1万以上的数值是以xxx.xx万的形式展示的,为方便后续统计,此处将这些类型的字段值转换为常规数字格式。

此处的预处理操作使用Python来处理,代码如下

import pandas as pd
data1 = pd.read_csv('data/videos1.csv', encoding='utf8') print(data1.shape)
print('---------------------------------------') # TODO 处理数值字段(view,comments,praise,coins,favors,forwarding)
import pandas as pd
import operator
data1 = pd.read_csv('data/videos1.csv', encoding='utf8')
print(data1.head(3))
print('-------------------------------------------------------') # # TODO id,title,duration,publisher,pub_time,view,comments,praise,coins,favors,forwarding
def operateVideos1() :
for i in range(0, len(data1)):
# if i == 0 :
# print(data1.iloc[i])
# print(data1.iloc[i][5])
id = data1.iloc[i][0]
view = data1.iloc[i][5]
comments = data1.iloc[i][6]
praise = data1.iloc[i][7]
coins = data1.iloc[i][8]
favors = data1.iloc[i][9]
forwarding = data1.iloc[i][10] if operator.contains(view, '万'):
num = int(float(view[0: len(view) - 1]) * 10000)
data1._set_value(i, "view", num)
if operator.contains(comments, '万'):
num = int(float(comments[0: len(comments) - 1]) * 10000)
data1._set_value(i, "comments", num)
if operator.contains(praise, '万'):
num = int(float(praise[0: len(praise) - 1]) * 10000)
data1._set_value(i, "praise", num)
if operator.contains(coins, '万'):
num = int(float(coins[0: len(coins) - 1]) * 10000)
data1._set_value(i, "coins", num)
if operator.contains(favors, '万'):
num = int(float(favors[0: len(favors) - 1]) * 10000)
data1._set_value(i, "favors", num)
if operator.contains(forwarding, '万'):
num = int(float(forwarding[0: len(forwarding) - 1]) * 10000)
data1._set_value(i, "forwarding", num)
data1.to_csv('out/v1.csv', index=False) operateVideos1()

预处理之后的部分数据展示:

数据集1:

3、参考资料

  • 多元统计分析及R使用(第五版)

结束!

基于R的Bilibili视频数据建模及分析——预处理篇的更多相关文章

  1. (转)基于RTP的H264视频数据打包解包类

    最近考虑使用RTP替换原有的高清视频传输协议,遂上网查找有关H264视频RTP打包.解包的文档和代码.功夫不负有心人,找到不少有价值的文档和代码.参考这些资料,写了H264 RTP打包类.解包类,实现 ...

  2. 基于RTP的H264视频数据打包解包类

    from:http://blog.csdn.net/dengzikun/article/details/5807694 最近考虑使用RTP替换原有的高清视频传输协议,遂上网查找有关H264视频RTP打 ...

  3. Twitter基于R语言的时序数据突变检测(BreakoutDetection)

    Twitter开源的时序数据突变检测(BreakoutDetection),基于无参的E-Divisive with Medians (EDM)算法,比传统的E-Divisive算法快3.5倍以上,并 ...

  4. 【FFMPEG】基于RTP的H264视频数据打包解包类

    最近考虑使用RTP替换原有的高清视频传输协议,遂上网查找有关H264视频RTP打包.解包的文档和代码.功夫不负有心人,找到不少有价值的文档和代码.参考这些资料,写了H264 RTP打包类.解包类,实现 ...

  5. 【Wyn Enterprise BI知识库】 认识多维数据建模与分析 ZT

    与业务系统类似,商业智能的基础是数据.但是,因为关注的重点不同,业务系统的数据使用方式和商业智能系统有较大差别.本文主要介绍的就是如何理解商业智能所需的多维数据模型和多维数据分析. 数据立方体 多维数 ...

  6. Kaggle-tiantic数据建模与分析

    1.数据可视化 kaggle中数据解释:https://www.kaggle.com/c/titanic/data 数据形式: 读取数据,并显示数据信息 data_train = pd.read_cs ...

  7. 基于Python接口自动化测试框架+数据与代码分离(进阶篇)附源码

    引言 在上一篇<基于Python接口自动化测试框架(初级篇)附源码>讲过了接口自动化测试框架的搭建,最核心的模块功能就是测试数据库初始化,再来看看之前的框架结构: 可以看出testcase ...

  8. 数据源管理 | 基于DataX组件,同步数据和源码分析

    本文源码:GitHub·点这里 || GitEE·点这里 一.DataX工具简介 1.设计理念 DataX是一个异构数据源离线同步工具,致力于实现包括关系型数据库(MySQL.Oracle等).HDF ...

  9. R语言中文社区历史文章整理(类型篇)

    R语言中文社区历史文章整理(类型篇)   R包: R语言交互式绘制杭州市地图:leafletCN包简介 clickpaste包介绍 igraph包快速上手 jiebaR,从入门到喜欢 Catterpl ...

  10. 机器学习与数据科学 基于R的统计学习方法(基础部分)

    1.1 机器学习的分类 监督学习:线性回归或逻辑回归, 非监督学习:是K-均值聚类, 即在数据点集中找出“聚类”. 另一种常用技术叫做主成分分析(PCA) , 用于降维, 算法的评估方法也不尽相同. ...

随机推荐

  1. Spring UnitTest

    demo:https://files.cnblogs.com/files/netact/spring01.zip 首先说一下Spring IOC的运行机制,同过xml或者annotation()来将p ...

  2. Perl报错you may need to install the Win32::Console module(转)

    ActivePerl-5.26.3.XXXX.msi安装后,命令行执行cpan,会出现如下提示而无法继续. Can't locate Win32/Console.pm in @INC (you may ...

  3. css - 预编译less下,解决深度选择器失效问题,完成css样式修改

    #若深度选择器有效.使用此可修改样式 /deep/ .cube-btn{ //...自定义css样式 } #深度选择器失效,则: 1.重新定义deep深度选择器 @deep:~'>>> ...

  4. es6数组去重、数组中的对象去重 && 删除数组(按条件或指定具体元素 如:id)&& 筛选去掉没有子组件的父组件

    // 数组去重 { const arr = [1,2,3,4,1,23,5,2,3,5,6,7,8,undefined,null,null,undefined,true,false,true,'中文' ...

  5. Little Girl and Maximum Sum CodeForces - 276C - 差分

    给定一个数列 \(a= { a_1,a_2,...,a_n }\) 以及 \(q\) 次查询. 其中第 \(i\) 次查询如同:\(l_i, r_i\),意指求 \(\sum_{j=l_i}^{r_i ...

  6. 如何把接口返回文件流读取后写入Excel

    代码: res = res.content #接口返回的内容 with open(path,mode='wb') as file: #excel的路径 file.write(res)

  7. css - contenteditable

    css - contenteditable contenteditable属性 contenteditable 属性是 HTML5 中的新属性.规定是否可编辑元素的内容. 让contenteditab ...

  8. List进行分隔,分批插入数据库

    背景,当数据集合超过一定数据量时,则会插入失败,需要将集合进行分隔,分批插入 /** * 分批插入-公共方法 * @param objects:数据集合 * @param subSize:单次插入的条 ...

  9. kali Linux--打开&关闭防火墙

    1.安装ufw apt-get install ufw 2.关闭防火墙 ufw disable. 3.开启防火墙 ufw enable

  10. Pytorch————学习1

    torch.nn  仅支持小批量.整个torch.nn程序包仅支持作为小批量样本的输入,而不支持单个样本. 例如,nn.Conv2d采用的是4D张量:nSamples x nChannels x He ...