制作mnist格式数据集
import os
from PIL import Image
from array import *
from random import shuffle # # 文件组织架构:
# ├──training-images
# │ └──0(类别为0的图像)
# │ ├──1(类别为1的图像)
# │ ├──2(类别为2的图像)
# │ ├──3(类别为3的图像)
# │ └──4(类别为4的图像)
# ├──test-images
# │ └──0(类别为0的图像)
# │ ├──1(类别为1的图像)
# │ ├──2(类别为2的图像)
# │ ├──3(类别为3的图像)
# │ └──4(类别为4的图像)
# └── mnist数据集制作.py(本脚本) # Load from and save to
Names = [['./training-images', 'train'], ['./test-images', 'test']] for name in Names: data_image = array('B')
data_label = array('B') print(os.listdir(name[0]))
FileList = []
for dirname in os.listdir(name[0])[0:]: # [1:] Excludes .DS_Store from Mac OS
# print(dirname)
path = os.path.join(name[0], dirname)
# print(path)
for filename in os.listdir(path):
# print(filename)
if filename.endswith(".png"):
FileList.append(os.path.join(name[0] + '/', dirname + '/', filename))
print(FileList)
shuffle(FileList) # Usefull for further segmenting the validation set for filename in FileList: label = int(filename.split('/')[2])
print(filename)
Im = Image.open(filename)
# print(Im) pixel = Im.load() width, height = Im.size for x in range(0, width):
for y in range(0, height):
data_image.append(pixel[y, x]) data_label.append(label) # labels start (one unsigned byte each) hexval = "{0:#0{1}x}".format(len(FileList), 6) # number of files in HEX # header for label array header = array('B')
header.extend([0, 0, 8, 1, 0, 0])
header.append(int('0x' + hexval[2:][:2], 16))
header.append(int('0x' + hexval[2:][2:], 16)) data_label = header + data_label # additional header for images array if max([width, height]) <= 256:
header.extend([0, 0, 0, width, 0, 0, 0, height])
else:
raise ValueError('Image exceeds maximum size: 256x256 pixels'); header[3] = 3 # Changing MSB for image data (0x00000803) data_image = header + data_image output_file = open(name[1] + '-images-idx3-ubyte', 'wb')
data_image.tofile(output_file)
output_file.close() output_file = open(name[1] + '-labels-idx1-ubyte', 'wb')
data_label.tofile(output_file)
output_file.close() # 运行脚本得到四个文件test-images-idx3-ubyte、test-labels-idx1-ubyte、train-images-idx3-ubyte、train-labels-idx1-ubyte
# 在cmd中利用gzip -c train-labels-idx1-ubyte > train-labels-idx1-ubyte.gz命令对上述四个文件压缩得到最终的mnist格式数据集
制作mnist格式数据集的更多相关文章
- 仿照CIFAR-10数据集格式,制作自己的数据集
本系列文章由 @yhl_leo 出品,转载请注明出处. 文章链接: http://blog.csdn.net/yhl_leo/article/details/50801226 前一篇博客:C/C++ ...
- 使用 MNIST 图像识别数据集
机器学习领域中最迷人的主题之一是图像识别 (IR). 使用红外系统的示例包括使用指纹或视网膜识别的计算机登录程序和机场安全系统的扫描乘客脸寻找某种通缉名单上的个人.MNIST 数据集是可用于实验的简单 ...
- 自动化工具制作PASCAL VOC 数据集
自动化工具制作PASCAL VOC 数据集 1. VOC的格式 VOC主要有三个重要的文件夹:Annotations.ImageSets和JPEGImages JPEGImages 文件夹 该文件 ...
- matlab遍历文件制作自己的数据集 .mat文件
原文作者:aircraft 原文地址:https://www.cnblogs.com/DOMLX/p/9115788.html 看到深度学习里面的教学动不动就是拿MNIST数据集,或者是IMGPACK ...
- SSD-tensorflow-2 制作自己的数据集
VOC2007数据集格式: VOC2007详细介绍在这里,提供给大家有兴趣作了解.而制作自己的数据集只需用到前三个文件夹,所以请事先建好这三个文件夹放入同一文件夹内,同时ImageSets文件夹内包含 ...
- Windows10+YOLOv3实现检测自己的数据集(1)——制作自己的数据集
本文将从以下三个方面介绍如何制作自己的数据集 数据标注 数据扩增 将数据转化为COCO的json格式 参考资料 一.数据标注 在深度学习的目标检测任务中,首先要使用训练集进行模型训练.训练的数据集好坏 ...
- 在线图标制作,格式转换 ICON
在线图标制作,格式转换 https://www.easyicon.net/covert/
- 使用labelImg制作自己的数据集(VOC2007格式)用于Faster-RCNN训练
https://blog.csdn.net/u011956147/article/details/53239325 https://blog.csdn.net/u011574296/article/d ...
- 【目标检测实战】目标检测实战之一--手把手教你LMDB格式数据集制作!
文章目录 1 目标检测简介 2 lmdb数据制作 2.1 VOC数据制作 2.2 lmdb文件生成 lmdb格式的数据是在使用caffe进行目标检测或分类时,使用的一种数据格式.这里我主要以目标检测为 ...
- 如何将notMNIST转成MNIST格式
相信了解机器学习的对MNIST不会陌生,Google的工程师Yaroslav Bulatov 创建了notMNIST,它和MNIST类似,图像28x28,也有10个Label(A-J). 在Tenso ...
随机推荐
- iOS的一些性能优化
1. 卡顿优化-CPU 尽量使用轻量级的对象,比如用不到事件处理的地方,可以考虑使用CALayer取代UIView 不要频繁地调用UIView的相关属性,比如frame.bounds.tranform ...
- 为什么gdb通过0地址显示偏移会提示地址错误
现象 在gdb中,如果想看一个struct的某个field的偏移量,和C语言一样可以通过对一个0地址变量取地址,然后取成员的偏移量获得.更神奇的地方在于和C语言一样,这里也不会触发内存访问异常. 另外 ...
- 【笔记】DDD实战课-人保架构欧创新
目录 开篇 学好DDD,你能做什么? 基础 领域驱动设计:微服务设计为什么要选择 DDD? DDD的两层设计 DDD与微服务的关系 领域.子域.核心域.通用域和支撑域:傻傻分不清? 领域和子域 核心域 ...
- 37.Spring注解相关面试题
1.@Resource和@Autowired 区别 2.@Repository.@Component.@Service.@Controller 区别
- vue 鼠标拖拽
<template> <div class="home"> <div id="box" v-drag></div> ...
- JAVASCRIPT 对有符号整型、无符号整型、浮点型、十六进制、二进制的数据处理
1.十六进制字符串转有符号整型,支持S8.S16.S32: function hexToInt(hex) { if(hex.length % 2 != 0) { hex = "0" ...
- Oracle 计划任务批量清理临时表实例
昨天发现近一段时间,公司某oracle库数据泵方式备份比之前慢了很多,备份集大小并未增长太多.查看了下发现该用户下存在几十万张表. 一.问题分析 1.查看用户下面的表 select count(*) ...
- 转L:[JAVA基础] 成员变量和局部变量(一看就懂的总结归纳篇)
[JAVA基础] 成员变量和局部变量(一看就懂的总结归纳篇) JVM--Java虚拟机详解
- python爬虫实战——自动下载百度图片(文末附源码)
用Python制作一个下载图片神器 前言 这个想法是怎么来的? 很简单,就是不想一张一张的下载图片,嫌太慢. 在很久很久以前,我比较喜欢收集各种动漫的壁纸,作为一个漫迷,自然是能收集多少就收集多少.小 ...
- Leetcode本地阅读器开发--01界面设计二
返回项目声明及目录:Leetcode本地阅读器开发--总声明 继续上一节内容: 1.第一个内容是左边第一行的功能,读取默认路径和修改路径.此路径为本地阅读器的搜索题目的主目录. 为了整个程序都能读取工 ...