题解 洛谷 P2388 阶乘之乘
简要题意
求 \(1!\times 2!\times \cdots\times n!\) 的末尾有几个 \(0\) .
\(n\le 10^8\)
题解
主要思路
首先,一个数末尾有几个零等价于它有多少个因子 \(10\) .
即这个数有多少个因子 \(2\) 和 \(5\),又因为因子 \(5\) 的数量少于因子 \(2\) 的数量,所以只需统计因子 \(5\) 的数量 .
注意,\(25\) 有两个 \(5\) 因子(笑)
一个 \(\omega(n)\) 的算法
平凡的去除因子 \(5\) 即可 .
一个 \(O(\log n)\) 的算法
这里讲的通俗一些 .
枚举 \(5\) 的方幂 \(5^k\) .
对于每个 \(i\) 计算 \(i!\) 的贡献,显然是 \(\left\lfloor\dfrac{i}{5^k}\right\rfloor\) .
那个下取整是 \(1,2,3,\cdots\) 重复 \(5^k\) 次的结果,用个等差数列求和就可解决!!
一个算法
其实这个题在 OEIS 上式能搜到的:http://oeis.org/A173345
但是我没找到 \(O(1)\) 公式 /xk
代码
算法 \(1\)(\(\omega(n)\))
// 初始 t=0, s=0, ans=0
for (int i=1;i<=n;i++)
{
t=i;
while (!(t%5)){++s; t/=5;}
ans+=s;
}
算法 \(2\)
// 初始 now=5, ans=0
while (now<=n)
{
ll t=n;
while (t%now!=now-1){ans+=t/now; --t;}
ans+=now*(t/now)*(t/now+1)/2;
now*=5;
}
算法 \(3\)
题解 洛谷 P2388 阶乘之乘的更多相关文章
- 洛谷——P2388 阶乘之乘
P2388 阶乘之乘 题目背景 不告诉你…… 题目描述 求出1!*2!*3!*4!*……*n!的末尾有几个零 输入输出格式 输入格式: n(n<=10^8) 输出格式: 有几个零 输入输出样例 ...
- 洛谷 P2388 阶乘之乘 题解
本蒟蒻又来发题解了QwQ; 看到这个题目,本蒟蒻第一眼就想写打个暴力: 嗯,坏习惯: 但是,动动脑子想一想就知道,普通的的暴力是过不了的: 但是,身为蒟蒻的我,也想不出什么高级的数学方法来优化: 好, ...
- 洛谷P2388 阶乘之乘
题目背景 不告诉你-- 题目描述 求出1!*2!*3!*4!*--*n!的末尾有几个零 输入输出格式 输入格式: n(n<=10^8) 输出格式: 有几个零 输入输出样例 输入样例#1: 复制 ...
- 【洛谷 P2388 阶乘之乘】模拟
分析 求因数5的个数 AC代码 #include<iostream> using namespace std; int main() { long long n,t,ans=0,s=0; ...
- 洛谷P1009 阶乘之和 题解
想看原题请点击这里:传送门 看一下原题: 题目描述 用高精度计算出S=!+!+!+…+n! (n≤) 其中“!”表示阶乘,例如:!=****××××. 输入格式 一个正整数N. 输出格式 一个正整数S ...
- 题解 洛谷P5018【对称二叉树】(noip2018T4)
\(noip2018\) \(T4\)题解 其实呢,我是觉得这题比\(T3\)水到不知道哪里去了 毕竟我比较菜,不大会\(dp\) 好了开始讲正事 这题其实考察的其实就是选手对D(大)F(法)S(师) ...
- 题解 洛谷 P3396 【哈希冲突】(根号分治)
根号分治 前言 本题是一道讲解根号分治思想的论文题(然鹅我并没有找到论文),正 如论文中所说,根号算法--不仅是分块,根号分治利用的思想和分块像 似却又不同,某一篇洛谷日报中说过,分块算法实质上是一种 ...
- 题解-洛谷P5410 【模板】扩展 KMP(Z 函数)
题面 洛谷P5410 [模板]扩展 KMP(Z 函数) 给定两个字符串 \(a,b\),要求出两个数组:\(b\) 的 \(z\) 函数数组 \(z\).\(b\) 与 \(a\) 的每一个后缀的 L ...
- 题解-洛谷P4229 某位歌姬的故事
题面 洛谷P4229 某位歌姬的故事 \(T\) 组测试数据.有 \(n\) 个音节,每个音节 \(h_i\in[1,A]\),还有 \(m\) 个限制 \((l_i,r_i,g_i)\) 表示 \( ...
随机推荐
- Oracle RAC修改监听端口号
目录 修改OracleRAC监听端口号: 1.查看当前数据库监听状态: 2.修改集群监听端口: 3.手动修改LOCAL_LISTENER: 4.停止集群监听和SCAN: 5.修改listener.or ...
- 字符编码,存储引擎,MySQL字段类型,MySQL字段约束条件
字符编码 查看MySQL默认编码命令:\s """ 如果是5.X系列 显示的编码有多种 latin1 gbk 如果是8.X系列 显示的统一是utf8mb4 utf8mb4 ...
- HMS Core使能AI智慧体验,共建创新应用生态
5月17日,2022年搜狐科技峰会成功举办,峰会汇聚各界大咖,共同探讨AI 技术的深入应用以及行业数字化的发展趋势.华为终端云服务应用生态BU总裁望岳发表题为<使能AI智慧体验,共建创新应用生态 ...
- linux篇-Centos7jdk安装
2.1查看现有JDK #rpm -qa|grep jdk (如果有其他版本的JDK建议卸载) 卸载其他版本的JDK命令 #yum –y remove java-1.6.0 #yum –y remov ...
- 从标准输入流中读取并执行shell指定函数
巧妙的ohmytmux配置 看oh my tmux的配置,发现他们很巧妙的将配置和shell函数放到一个文件里 比如切换鼠标模式的相关配置和shell函数, # : << EOF # .. ...
- 01C语言基础(二)
Day07 笔记 指针和函数: 栈 帧: 当函数调用时,系统会在 stack 空间上申请一块内存区域,用来供函数调用,主要存放 形参 和 局部变量(定义在函数内部). 当函数调用结束,这块内存区域自动 ...
- go-zero 微服务实战系列(一、开篇)
前言 在社区中经常看到有人问有没有基于 go-zero 的比较完整的项目参考,该类问题本质上是想知道基于 go-zero 的项目的最佳实践.完整的项目应该是一个完整的产品功能,包含产品需求.架构设计. ...
- mysql复制表的两种方式
mysql复制表的两种方式. 第一.只复制表结构到新表 create table 新表 select * from 旧表 where 1=2 或者 create table 新表 like 旧表 第二 ...
- SAP APO-需求计划
需求计划可以对市场中的产品进行预测. 需求计划过程的输出就是需求计划,它考虑了影响需求的所有因素. 需求计划流程定义了需求计划周期中的活动. 由于需求计划过程以循环的形式进行,因此可以重复某些活动. ...
- C#中的 Attribute 与 Python/TypeScript 中的装饰器是同个东西吗
前言 最近成功把「前端带师」带入C#的坑(实际是前端带师开始从cocos转unity游戏开发了) 某天,「前端带师」看到这段代码后问了个问题:[这个是装饰器]? [HttpGet] public Re ...