摘录自:

  
 

当前SAT主要关键技术及其相关文献——参见下面这段叙述。

The annual SAT competitions have become an essential event for the distribution of SAT benchmarks and the development of new SAT-solving methods [5]. Sequential SAT solvers compete mainly in three categories: industrial, crafted, and random tracks. The SAT competitions have demonstrated how difficult it is for SAT solvers to perform well across all categories. Results show that conflict-driven clause-learning (CDCL) SAT solvers were most performant for solving industrial and crafted SAT benchmarks, whereas look-ahead and Stochastic Local Search (SLS)-based SAT solvers have dominated the random category [5]. Modern implementations of CDCL SAT solvers employ a lot of heuristics. Some of them can be considered baseline, such as the Variable State Independent Decaying Sum (VSIDS) [6], restarts [7], and Literal Block Distance (LBD) [8]. Several others were incorporated recently, including: Learnt Clause Minimization (LCM) [9], Distance (Dist) heuristic [10], Chronological Backtracking (ChronoBT) [11], duplicate learnts heuristic [12], Conflict History-Based (CHB) heuristic [13], Learning Rate-based Branching (LRB) heuristic [14], and the SLS component [15].

[5] SAT Competitions. 2002. Available online: http://www.satcompetition.org (accessed on 19 November 2019).

[6] Moskewicz, M.W.; Madigan, C.F.; Zhao, Y.; Zhang, L.; Malik, S. Chaff: Engineering an efficient SAT solver. In Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232), Las Vegas, NV, USA, 22 June 2001; pp. 530–535. [Google Scholar] [CrossRef]

[7] Luby, M.; Sinclair, A.; Zuckerman, D. Optimal speedup of Las Vegas algorithms. Inf. Process. Lett. 1993, 47, 173–180. [Google Scholar] [CrossRef]

[8] Audemard, G.; Simon, L. Predicting Learnt Clauses Quality in Modern SAT Solvers. In Proceedings of the 21st International Jont Conference on Artifical Intelligence, Pasadena, CA, USA, 11–17 July 2009; IJCAI’09. pp. 399–404. [Google Scholar]

[9] Luo, M.; Li, C.M.; Xiao, F.; Manyà, F.; Lü, Z. An Effective Learnt Clause Minimization Approach for CDCL SAT Solvers. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-17, Melbourne, Australia 19–25 August 2017; pp. 703–711. [Google Scholar] [CrossRef]

[10] Xiao, F.; Luo, M.; Li, C.M.; Manyà, F.; Lü, Z. MapleLRB LCM, Maple LCM, Maple LCM Dist, MapleLRB LCMoccRestart and Glucose-3.0+width in SAT Competition 2017. In Proceedings of the SAT Competition 2017: Solver and Benchmark Descriptions, Melbourne, Australia, 28 August–1 September 2017; Volume B-2017-1, pp. 25–26. [Google Scholar]

[11] Nadel, A.; Ryvchin, V. Chronological Backtracking. In Proceedings of the Theory and Applications of Satisfiability Testing—SAT 2018, Oxford, UK, 9–12 July 2018; Beyersdorff, O., Wintersteiger, C.M., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 111–121. [Google Scholar]

[12] Kochemazov, S.; Zaikin, O.; Semenov, A.A.; Kondratiev, V. Speeding Up CDCL Inference with Duplicate Learnt Clauses. In Proceedings of the ECAI 2020—24th European Conference on Artificial Intelligence, Santiago de Compostela, Spain, 29 August–8 September 2020; Giacomo, G.D., Catalá, A., Dilkina, B., Milano, M., Barro, S., Bugarín, A., Lang, J., Eds.; IOS Press: Shepherdsville, KY, USA, 2020; Volume 325, pp. 339–346. [Google Scholar] [CrossRef]

[13] Liang, J.H.; Ganesh, V.; Poupart, P.; Czarnecki, K. Exponential Recency Weighted Average Branching Heuristic for SAT Solvers. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016; AAAI’16. pp. 3434–3440. [Google Scholar]

[14] Liang, J.H.; Ganesh, V.; Poupart, P.; Czarnecki, K. Learning Rate Based Branching Heuristic for SAT Solvers. In Proceedings of the Theory and Applications of Satisfiability Testing—SAT 2016—19th International Conference, Bordeaux, France, 5–8 July 2016; Creignou, N., Berre, D.L., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; Volume 9710, pp. 123–140. [Google Scholar] [CrossRef]

[15] Zhang, X.; Cai, S. Relaxed Backtracking with Rephasing. In Proceedings of the SAT Competition 2020, Alghero, Italy, 3–10 July 2020; Solver and Benchmark Descriptions. University of Helsinki, Department of Computer Science: Helsinki, Finland, 2020; Volume B-2020-1, pp. 15–16. [Google Scholar]

   

当前SAT主要关键技术及其相关文献2022-11-1的更多相关文章

  1. 20篇关于商品管理系统和uml技术的相关文献

    1.基于UML技术的商品管理系统设计与实现 2.UML技术在行业资源平台系统建模中的应用 3.基于JSP的商品信息管理系统设计与开发 4.基于UML技术的客户关系管理系统实现 5.商品管理系统 6.基 ...

  2. Java进阶(三)多线程开发关键技术

    原创文章,同步发自作者个人博客,转载请务必以超链接形式在文章开头处注明出处http://www.jasongj.com/java/multi_thread/. sleep和wait到底什么区别 其实这 ...

  3. Java Hotspot G1 GC的一些关键技术

    G1 GC,全称Garbage-First Garbage Collector,通过-XX:+UseG1GC参数来启用,作为体验版随着JDK 6u14版本面世,在JDK 7u4版本发行时被正式推出,相 ...

  4. 5G关键技术研究方向

    对于还没体验4G移动通信魅力的国内的移动通信用户而言,5G也许还是镜中花,雾中月:但对于科研界而言,5G研究已经启程,三星电子5月份宣布,率先开发出了首个基于5G核心技术的移动传输网络,实现每秒1Gb ...

  5. <脱机手写汉字识别若干关键技术研究>

    脱机手写汉字识别若干关键技术研究 对于大字符集识别问题,一般采用模板匹配的算法,主要是因为该算法比较简单,识别速度快.但直接的模板匹配算法往往无法满足实际应用中对识别精度的需求.为此任俊玲编著的< ...

  6. 大数据 --> 大数据关键技术

    大数据关键技术 大数据环境下数据来源非常丰富且数据类型多样,存储和分析挖掘的数据量庞大,对数据展现的要求较高,并且很看重数据处理的高效性和可用性. 传统数据处理方法的不足 传统的数据采集来源单一,且存 ...

  7. Linux多核并行编程关键技术

    多核并行编程的背景 在摩尔定律失效之前,提升处理器性能通过主频提升.硬件超线程等技术就能满足应用需要.随着主频提升慢慢接近撞上光速这道墙,摩尔定律开始逐渐失效,多核集成为处理器性能提升的主流手段.现在 ...

  8. php_D3_“简易聊天室 ”实现的关键技术 详解

                      PHP+MySQL实现Internet上一个简易聊天室的关键技术  系统目标: 聊天室使用数据库汇集每个人的发言,并可将数据库内的发言信息显示在页面,让每个用户都可 ...

  9. 【设计经验】4、SERDES关键技术总结

    一.SERDES介绍 随着大数据的兴起以及信息技术的快速发展,数据传输对总线带宽的要求越来越高,并行传输技术的发展受到了时序同步困难.信号偏移严重,抗干扰能力弱以及设计复杂度高等一系列问题的阻碍.与并 ...

  10. SERDES关键技术总结

    转自https://www.cnblogs.com/liujinggang/p/10125727.html 一.SERDES介绍 随着大数据的兴起以及信息技术的快速发展,数据传输对总线带宽的要求越来越 ...

随机推荐

  1. winform高dpi问题探索

    ​ winform的高dpi适应问题由来已久,属于一个历史遗留问题.主要是由于winform对不同尺寸.不同分辨率的屏幕适配不足造成的.接下来我们简单说一下如何解决,最后我们探索一下解决此问题的原理. ...

  2. 关于filter_input函数

    PHP: filter_input <?php $search_html = filter_input(INPUT_GET, 'search', FILTER_SANITIZE_SPECIAL_ ...

  3. WPF materialDesign 锁屏后界面卡死问题解决

    materialDesign的一个缓存机制问题,在xaml文件中Window属性添加一行: materialDesign:ShadowAssist.CacheMode="{x:Null}&q ...

  4. paddle 错误(ValueError: all input arrays must have the same shape)

    参考:voc数据集执行eval.py命令报错 · Issue #3456 · PaddlePaddle/PaddleDetection (github.com) 配置文件加这两行: EvalReade ...

  5. CAD专用卸载工具,完美彻底卸载清除干净cad各种残留注册表和文件。

    CAD专用卸载工具,完美彻底卸载清除干净cad各种残留注册表和文件.有的同学由于一些原因想把cad卸载掉然后重新安装,但是cad安装到一半就失败了或者显示已安装或者未完成,还有的同学会遇到" ...

  6. 【未完】【DDR系列文章收集】

    资料来源 1.https://zhuanlan.zhihu.com/p/343262874 (1)主要讲DRAM刷新的内容: 为什么需要刷新(漏电流导致电容电荷的流失)? 刷新的本质(对存储数据的电容 ...

  7. Redis缓存中的数据和数据库不一致

    首先关于两者数据的一致性包含有两种情况: (1)缓存中有数据时,那数据库中的数据要和缓存中的数据相同: (2)缓存中没有数据时,数据库中的数据必须是最新的. 如果不符合以上两种情况,就属于缓存和数据库 ...

  8. unity ScriptObject使用

    转自 https://www.jianshu.com/p/77fabc83555b using UnityEngine; [CreateAssetMenu(fileName = "Untit ...

  9. C# 抽象类小谈

    最近在做一个测试系统,就是读取功率计上的数据,在上位机软件上显示出来. 电脑界面不是我们这次的主讲就略过,我们这里主要讲一个类的实现. 最开始领导给了一个 远方的三相功率计 给我让我写上位机,很简单, ...

  10. centos 防火墙开放端口

    centos防火墙开放端口 开启防火墙 systemctl start firewalld 开放指定端口 firewall-cmd --zone=public --add-port=<PORT& ...