原文链接www.cnblogs.com/zhouzhendong/p/AGC020E.html

前言

真 \(\cdot\) 信仰型动态规划

题解

我们可以采用信仰型动态规划解决此题。

设 \(dp[S]\) 表示 S 这个字符串的所有子集可以被编码成多少种。

那么分两种情况转移:

  1. 不编码,答案是子集总数。

  2. 考虑枚举最左边的一处编码,递归DP。

时间复杂度 \(O(信仰)\) 。

时间复杂度证明?详见官方题解。反正我没去看。

代码

#include <bits/stdc++.h>
#define clr(x) memset(x,0,sizeof x)
#define For(i,a,b) for (int i=(a);i<=(b);i++)
#define Fod(i,b,a) for (int i=(b);i>=(a);i--)
#define fi first
#define se second
#define pb(x) push_back(x)
#define mp(x,y) make_pair(x,y)
#define outval(x) cerr<<#x" = "<<x<<endl
#define outtag(x) cerr<<"---------------"#x"---------------"<<endl
#define outarr(a,L,R) cerr<<#a"["<<L<<".."<<R<<"] = ";\
For(_x,L,R)cerr<<a[_x]<<" ";cerr<<endl;
using namespace std;
typedef long long LL;
LL read(){
LL x=0,f=0;
char ch=getchar();
while (!isdigit(ch))
f|=ch=='-',ch=getchar();
while (isdigit(ch))
x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
return f?-x:x;
}
typedef __int128 LG;
const int N=105,mod=998244353;
int Pow(int x,int y){
int ans=1;
for (;y;y>>=1,x=(LL)x*x%mod)
if (y&1)
ans=(LL)ans*x%mod;
return ans;
}
void Add(int &x,int y){
if ((x+=y)>=mod)
x-=mod;
}
void Del(int &x,int y){
if ((x-=y)<0)
x+=mod;
}
int Add(int x){
return x>=mod?x-mod:x;
}
int Del(int x){
return x<0?x+mod:x;
}
int n;
char s[N];
int a[N];
int pw2[N];
map <LG,int> dp,vis;
void write(LG x){
if (x>9)
write(x/10);
putchar('0'+x%10);
}
LG Get(LG a,int L,int R){
return a>>L&(((LG)1<<(R-L+1))-1);
}
int DP(LG K){
if (vis[K])
return dp[K];
vis[K]=1;
int ans=0,k=K>>n;
if (!k)
return dp[K]=1;
LG S=Get(K,0,n-1);
For(i,0,k-1)
if (S>>i&1)
ans++;
ans=pw2[ans];
int cnt=0;
For(i,0,k-1){
For(j,i,k-1){
int len=j-i+1;
if (j+len>k-1)
break;
LG v=Get(S,i,j);
for (int t=i+len;t+len-1<k;t+=len){
v&=Get(S,t,t+len-1);
Add(ans,(LL)pw2[cnt]*DP(v|(LG)len<<n)%mod
*DP(Get(S,t+len,k-1)|(LG)(k-(t+len))<<n)%mod);
}
}
if (S>>i&1)
cnt++;
}
return dp[K]=ans;
}
int main(){
cin>>s;
n=strlen(s);
pw2[0]=1;
For(i,1,n)
pw2[i]=Add(pw2[i-1]<<1);
For(i,0,n-1)
a[i]=s[i]-'0';
LG S=0;
For(i,0,n-1)
S|=(LG)a[i]<<i;
S|=(LG)n<<n;
write(DP(S));
puts("");
return 0;
}

AtCoder Grand Contest 020 (AGC020) E - Encoding Subsets 动态规划的更多相关文章

  1. Atcoder Grand Contest 020 E - Encoding Subsets(记忆化搜索+复杂度分析)

    Atcoder 题面传送门 & 洛谷题面传送门 首先先考虑如果没有什么子集的限制怎样计算方案数.明显就是一个区间 \(dp\),这个恰好一年前就做过类似的题目了.我们设 \(f_{l,r}\) ...

  2. Atcoder Grand Contest 020 F - Arcs on a Circle(DP+小技巧)

    Atcoder 题面传送门 & 洛谷题面传送门 一道难度 unavailable 的 AGC F 哦 首先此题最棘手的地方显然在于此题的坐标可以为任意实数,无法放入 DP 的状态,也无法直接计 ...

  3. AtCoder Grand Contest 020

    A - Move and Win Time limit : 1sec / Memory limit : 512MB Score : 300 points Problem Statement A gam ...

  4. AtCoder Grand Contest 020 D - Min Max Repetition

    q<=1000个询问,每次问a,b,c,d:f(a,b)表示含a个A,b个B的字符串中,连续A或连续B最小的串中,字典序最小的一个串,输出这个串的c到d位.a,b<=5e8,d-c+1&l ...

  5. AtCoder Grand Contest 020 题解

    传送门 怎么又是\(tourist\)神仙的题-- \(A\) 咕咕 int n,a,b; int main(){ scanf("%d%d%d",&n,&a,&am ...

  6. AtCoder Grand Contest 002 (AGC002) F - Leftmost Ball 动态规划 排列组合

    原文链接https://www.cnblogs.com/zhouzhendong/p/AGC002F.html 题目传送门 - AGC002F 题意 给定 $n,k$ ,表示有 $n\times k$ ...

  7. AtCoder Grand Contest 012

    AtCoder Grand Contest 012 A - AtCoder Group Contest 翻译 有\(3n\)个人,每一个人有一个强大值(看我的假翻译),每三个人可以分成一组,一组的强大 ...

  8. AtCoder Grand Contest 011

    AtCoder Grand Contest 011 upd:这篇咕了好久,前面几题是三周以前写的... AtCoder Grand Contest 011 A - Airport Bus 翻译 有\( ...

  9. AtCoder Grand Contest 031 简要题解

    AtCoder Grand Contest 031 Atcoder A - Colorful Subsequence description 求\(s\)中本质不同子序列的个数模\(10^9+7\). ...

随机推荐

  1. 全面学习 Python 包:包的构建与分发

    首发于公众号:Python编程时光 1. 为什么需要对项目分发打包? 平常我们习惯了使用 pip 来安装一些第三方模块,这个安装过程之所以简单,是因为模块开发者为我们默默地为我们做了所有繁杂的工作,而 ...

  2. 基于JMeter的Quick Easy FTP Server性能测试

    FTP性能测试 1.引言 1.1背景说明 本测试选用的是一个小型的FTP服务器软件:Quick Easy FTP Server.Quick Easy FTP Server是一个全中文的FTP服务器软件 ...

  3. JS权威指南读书笔记(四)

    第十章 正则表达式 1 正则表达式直接量定义为包含在一对斜杠(/)之间的字符     a /s$/ == new RegExp("s$") 2 直接量字符:所有字母和数字都是按照字 ...

  4. 智表(ZCELL)插件产品选型说明书,市场主流插件对比,帮您选型

    智表(ZCELL)插件产品选型说明书,市场主流插件对比,帮您选型. 说明书下载:地址 一.    我们为什么需要智表插件产品 客户早已养成EXCEL中的操作习惯,BS架构下,普通的网页交互,与客户习惯 ...

  5. centOS学习part7:Oracle开机自启配置

    0 上一章(http://www.cnblogs.com/souvenir/p/3884904.html)我们用了很多时间以及很长的篇幅来介绍oracle的整个安装过程,希望对大家用所帮助.oracl ...

  6. python字符串的常见方法

    1.join方法:拼接字符串------->str a = "你是风儿我是沙"b = "@".join(a)print(b)>>>你@是 ...

  7. Flask之WTfroms组件

    一.WTfroms简介 WTForms插件是类似于django的form组件的插件,可以帮我们写标签,校验数据等. 二.安装与使用 安装: pip install WTForms 使用: from w ...

  8. Centos部属前后端项目

    一.安装python3 # 下载并解压 cd /opt wget https://www.python.org/ftp/python/3.6.3/Python-3.6.3.tgz tar -zxf P ...

  9. kubernetes-使用kubeadm部署kubernetes集群

    k8s官网介绍 Kubernetes是一个可移植的,可扩展的开源平台,用于管理容器化的工作负载和服务,可促进声明式配置和自动化.它拥有一个庞大且快速增长的生态系统.Kubernetes的服务,支持和工 ...

  10. 1.1“Linux操作系统”部署

    ---恢复内容开始--- 1.2.1 版本说明 操作系统版本:CentOS6.5 64位 1.2.2 部署条件说明 无 1.2.3 部署步骤说明 centos6.5 操作系统安装 1.创建虚拟机 2. ...