任意模数FFT

这是一个神奇的魔法,但是和往常一样,在这之前,先

\(\texttt{orz}\ \color{orange}{\texttt{matthew99}}\)

问题描述

给定 2 个多项式 \(F(x), G(x)\) ,请求出 \(F(x) * G(x)\)。

系数对 p 取模,\(2 \le p \le 10^9+9\)

拆系数FFT

我们考虑令\(M\)为\(\sqrt{p}\),那么我们可以将原本的多项式拆成4个。

\(F(x)=A(x)*M+B(x)\)

\(G(X)=C(X)*M+D(x)\)

然后\(A\),\(B\),\(C\),\(D\)随便乘一下就可以求出答案。

这样需要的\(FFT\)次数为7次。

合并FFT

我们思考一下有没有什么优化的方法呢?

令\(P(x)=A(x)+iB(x)\),\(Q(x)=A(x)-iB(x)\)

\(F_p[k]\)和\(F_q[k]\)分别表示\(P\)和\(Q\)做了\(DFT\)后的\(k\)项系数。

推一推式子可以发现\(F_q[k]=conj(F_p[2L-k])\)。

那么我们只需要1遍\(DFT\)就可以求出这两个东西。

此时我们把模意义下的多项式乘法转换成了复数意义下的多项式乘法,就只需要按照\(FFT\)的过程实现。

把实部与虚部合并即可。

注意此时\(FFT\)的精度十分爆炸,所以用\(long\ double\)并预处理单位根比较好。

/*
mail: mleautomaton@foxmail.com
author: MLEAutoMaton
This Code is made by MLEAutoMaton
*/
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<algorithm>
#include<queue>
#include<set>
#include<map>
#include<iostream>
using namespace std;
#define ll long long
#define re register
#define file(a) freopen(a".in","r",stdin);freopen(a".out","w",stdout)
inline int gi()
{
int f=1,sum=0;char ch=getchar();
while(ch>'9' || ch<'0'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0' && ch<='9'){sum=(sum<<3)+(sum<<1)+ch-'0';ch=getchar();}
return f*sum;
}
const int N=1000010;const long double Pi=acos(-1.0);
int n,m,f[N],g[N],Mod;
struct node
{
long double x,y;
node operator+(const node &b)const{return (node){x+b.x,y+b.y};}
node operator-(const node &b)const{return (node){x-b.x,y-b.y};}
node operator*(const node &b)const{return (node){x*b.x-y*b.y,x*b.y+y*b.x};}
};
int r[N],limit,ans[N];
void fft(node *a,int opt)
{
for(int i=0;i<limit;i++)
if(i<r[i])swap(a[i],a[r[i]]);
for(int mid=1;mid<limit;mid<<=1)
{
node Root=(node){cos(Pi/mid),opt*sin(Pi/mid)};
for(int R=mid<<1,i=0;i<limit;i+=R)
{
node W=(node){1,0};
for(int j=0;j<mid;j++,W=W*Root)
{
node X=a[i+j],Y=W*a[mid+i+j];
a[i+j]=X+Y;a[mid+i+j]=X-Y;
}
}
}
}
node a[N],b[N],c[N],d[N];
void mtt()
{
int LIM=(1<<15)-1;
for(int i=0;i<=n;i++)f[i]=(f[i]+Mod)%Mod;for(int i=0;i<=m;i++)g[i]=(g[i]+Mod)%Mod;
for(int i=0;i<=n;i++)a[i]=(node){f[i]&LIM,f[i]>>15};
for(int i=0;i<=m;i++)b[i]=(node){g[i]&LIM,g[i]>>15};
fft(a,1);fft(b,1);
for(int i=0;i<limit;i++)c[i]=a[i],d[i]=b[i];
for(int i=0;i<limit;i++)
{
int j=(limit-i)&(limit-1);
a[i]=(node){0.5*(c[i].x+c[j].x),0.5*(c[i].y-c[j].y)}*d[i];
b[i]=(node){0.5*(c[i].y+c[j].y),0.5*(c[j].x-c[i].x)}*d[i];
}
fft(a,-1);fft(b,-1);
for(int i=0;i<limit;i++)
{
ll ia,ib,ic,id;
ia=(ll)(a[i].x/limit+0.5)%Mod;
ib=(ll)(a[i].y/limit+0.5)%Mod;
ic=(ll)(b[i].x/limit+0.5)%Mod;
id=(ll)(b[i].y/limit+0.5)%Mod;
ans[i]=((ia%Mod+((ib+ic)%Mod<<15))%Mod+(id%Mod<<30))%Mod;
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("in.in","r",stdin);
#endif
n=gi();m=gi();Mod=gi();
for(int i=0;i<=n;i++)f[i]=gi();for(int i=0;i<=m;i++)g[i]=gi();
limit=1;int l=0;
while(limit<=(n+m))limit<<=1,l++;
for(int i=0;i<limit;i++)r[i]=(r[i>>1]>>1)|((i&1)<<(l-1));
mtt();
for(int i=0;i<=n+m;i++)printf("%d ",(ans[i]+Mod)%Mod);
return 0;
}

题目

任意模数NTT

Shell Necklace

任意模数FFT的更多相关文章

  1. 【集训队作业2018】取名字太难了 任意模数FFT

    题目大意 求多项式 \(\prod_{i=1}^n(x+i)\) 的系数在模 \(p\) 意义下的分布,对 \(998244353\) 取模. \(p\) 为质数. \(n\leq {10}^{18} ...

  2. 51nod 1172 Partial Sums V2 卡精度的任意模数FFT

    卡精度的任意模数fft模板题……这道题随便写个表就能看出规律来(或者说考虑一下实际意义),反正拿到这题之后,很快就会发现他是任意模数fft模板题.然后我就去网上抄了一下板子……我打的是最土的任意模数f ...

  3. 51NOD 1258 序列求和 V4 [任意模数fft 多项式求逆元 伯努利数]

    1258 序列求和 V4 题意:求\(S_m(n) = \sum_{i=1}^n i^m \mod 10^9+7\),多组数据,\(T \le 500, n \le 10^{18}, k \le 50 ...

  4. 拆系数FFT(任意模数FFT)

    拆系数FFT 对于任意模数 \(mod\) 设\(m=\sqrt {mod}\) 把多项式\(A(x)\)和\(B(x)\)的系数都拆成\(a\times m+b\)的形式,时\(a, b\)都小于\ ...

  5. hdu 4656 Evaluation [任意模数fft trick]

    hdu 4656 Evaluation 题意:给出\(n,b,c,d,f(x) = \sum_{i=1}^{n-1} a_ix^i\),求\(f(b\cdot c^{2k}+d):0\le k < ...

  6. 再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT)

    再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT) 目录 再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Blueste ...

  7. 任意模数NTT

    任意模数\(NTT\) 众所周知,为了满足单位根的性质,\(NTT\)需要质数模数,而且需要能写成\(a2^{k} + r\)且\(2^k \ge n\) 比较常用的有\(998244353,1004 ...

  8. 【模板】任意模数NTT

    题目描述: luogu 题解: 用$fft$水过(什么$ntt$我不知道). 众所周知,$fft$精度低,$ntt$处理范围小. 所以就有了任意模数ntt神奇$fft$! 意思是这样的.比如我要算$F ...

  9. MTT:任意模数NTT

    MTT:任意模数NTT 概述 有时我们用FFT处理的数据很大,而模数可以分解为\(a\cdot 2^k+1\)的形式.次数用FFT精度不够,用NTT又找不到足够大的模数,于是MTT就应运而生了. MT ...

随机推荐

  1. Node学习之(第三章:仿Apache显示目录列表的功能)

    前言 今天咱们用Node.js中的核心模块以及上节学习的模板引擎art-template来实现服务器软件Apache的大体功能.用过Apache的朋友都知道,我们只需把本地文件放置在Apache的ww ...

  2. 2013.5.2 - KDD第十四天

    今天早上来了之后就处理语料,然后发现处理好后的gbk编码的语料在HPC上没法训,而utf8在上面训练可以.后来就让它在上面训着,学长还没来. 学长回来之后问他怎么回事,他说不应该,然后我们看了一下第一 ...

  3. Please provide compiled classes of your project with sonar.java.binaries property

    是因为一个jar包版本的原因,sonar-java-plugin-5.1.0.13090.jar 需要降级 https://repo.maven.apache.org/maven2/org/sonar ...

  4. 简单介绍 Java 中的注解 (Annotation)

    1. 例子 首先来看一个例子: @Override public String toString() { return "xxxxx"; } 这里用了 @Override, 目的是 ...

  5. Luogu P1339 热浪Heat Wave

    Luogu P1339 热浪Heat Wave 裸·单源最短路. 但是! 有以下坑点: 算过复杂度发现Floyd跑不过去就不要用了. 如果建边是双向边,边的数组大小要开两倍! 考场上如果再把初始化的$ ...

  6. spark-submit python egg 解决三方件依赖问题

    假设spark里用到了purl这个三方件,https://github.com/ultrabluewolf/p.url,他还额外依赖futures这个三方件(six的话,anaconda2自带). p ...

  7. 《发际线总是和我作队》第九次团队作业:Beta冲刺Scrum Meeting2

    项目 内容 这个作业属于哪个课程 软件工程 这个作业的要求在哪里 实验十三 团队作业9:Beta冲刺与团队项目冲刺 团队名称 发际线总和我作队 作业学习目标 (1)掌握软件黑盒测试技术:(2)掌握软件 ...

  8. LG4723 【模板】常系数线性递推

    P4723 [模板]常系数齐次线性递推 题目描述 求一个满足$k$阶齐次线性递推数列${a_i}$的第$n$项. 即:$a_n=\sum\limits_{i=1}^{k}f_i \times a_{n ...

  9. mysqldump 原理(转载)

    mysqldump 备份过程可以描述为: (1) 先发出一条 flush tables 关闭实例上所有打开的表(2) 创建一个全局锁,FLUSH TABLES WITH READ LOCK获得 db ...

  10. greenplum 表在各个节点数据的分布情况

    select gp_segment_id,count(*) from table_name group by gp_segment_id;