任意模数FFT
任意模数FFT
这是一个神奇的魔法,但是和往常一样,在这之前,先
\(\texttt{orz}\ \color{orange}{\texttt{matthew99}}\)
问题描述
给定 2 个多项式 \(F(x), G(x)\) ,请求出 \(F(x) * G(x)\)。
系数对 p 取模,\(2 \le p \le 10^9+9\)
拆系数FFT
我们考虑令\(M\)为\(\sqrt{p}\),那么我们可以将原本的多项式拆成4个。
\(F(x)=A(x)*M+B(x)\)
\(G(X)=C(X)*M+D(x)\)
然后\(A\),\(B\),\(C\),\(D\)随便乘一下就可以求出答案。
这样需要的\(FFT\)次数为7次。
合并FFT
我们思考一下有没有什么优化的方法呢?
令\(P(x)=A(x)+iB(x)\),\(Q(x)=A(x)-iB(x)\)
\(F_p[k]\)和\(F_q[k]\)分别表示\(P\)和\(Q\)做了\(DFT\)后的\(k\)项系数。
推一推式子可以发现\(F_q[k]=conj(F_p[2L-k])\)。
那么我们只需要1遍\(DFT\)就可以求出这两个东西。
此时我们把模意义下的多项式乘法转换成了复数意义下的多项式乘法,就只需要按照\(FFT\)的过程实现。
把实部与虚部合并即可。
注意此时\(FFT\)的精度十分爆炸,所以用\(long\ double\)并预处理单位根比较好。
/*
mail: mleautomaton@foxmail.com
author: MLEAutoMaton
This Code is made by MLEAutoMaton
*/
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<algorithm>
#include<queue>
#include<set>
#include<map>
#include<iostream>
using namespace std;
#define ll long long
#define re register
#define file(a) freopen(a".in","r",stdin);freopen(a".out","w",stdout)
inline int gi()
{
int f=1,sum=0;char ch=getchar();
while(ch>'9' || ch<'0'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0' && ch<='9'){sum=(sum<<3)+(sum<<1)+ch-'0';ch=getchar();}
return f*sum;
}
const int N=1000010;const long double Pi=acos(-1.0);
int n,m,f[N],g[N],Mod;
struct node
{
long double x,y;
node operator+(const node &b)const{return (node){x+b.x,y+b.y};}
node operator-(const node &b)const{return (node){x-b.x,y-b.y};}
node operator*(const node &b)const{return (node){x*b.x-y*b.y,x*b.y+y*b.x};}
};
int r[N],limit,ans[N];
void fft(node *a,int opt)
{
for(int i=0;i<limit;i++)
if(i<r[i])swap(a[i],a[r[i]]);
for(int mid=1;mid<limit;mid<<=1)
{
node Root=(node){cos(Pi/mid),opt*sin(Pi/mid)};
for(int R=mid<<1,i=0;i<limit;i+=R)
{
node W=(node){1,0};
for(int j=0;j<mid;j++,W=W*Root)
{
node X=a[i+j],Y=W*a[mid+i+j];
a[i+j]=X+Y;a[mid+i+j]=X-Y;
}
}
}
}
node a[N],b[N],c[N],d[N];
void mtt()
{
int LIM=(1<<15)-1;
for(int i=0;i<=n;i++)f[i]=(f[i]+Mod)%Mod;for(int i=0;i<=m;i++)g[i]=(g[i]+Mod)%Mod;
for(int i=0;i<=n;i++)a[i]=(node){f[i]&LIM,f[i]>>15};
for(int i=0;i<=m;i++)b[i]=(node){g[i]&LIM,g[i]>>15};
fft(a,1);fft(b,1);
for(int i=0;i<limit;i++)c[i]=a[i],d[i]=b[i];
for(int i=0;i<limit;i++)
{
int j=(limit-i)&(limit-1);
a[i]=(node){0.5*(c[i].x+c[j].x),0.5*(c[i].y-c[j].y)}*d[i];
b[i]=(node){0.5*(c[i].y+c[j].y),0.5*(c[j].x-c[i].x)}*d[i];
}
fft(a,-1);fft(b,-1);
for(int i=0;i<limit;i++)
{
ll ia,ib,ic,id;
ia=(ll)(a[i].x/limit+0.5)%Mod;
ib=(ll)(a[i].y/limit+0.5)%Mod;
ic=(ll)(b[i].x/limit+0.5)%Mod;
id=(ll)(b[i].y/limit+0.5)%Mod;
ans[i]=((ia%Mod+((ib+ic)%Mod<<15))%Mod+(id%Mod<<30))%Mod;
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("in.in","r",stdin);
#endif
n=gi();m=gi();Mod=gi();
for(int i=0;i<=n;i++)f[i]=gi();for(int i=0;i<=m;i++)g[i]=gi();
limit=1;int l=0;
while(limit<=(n+m))limit<<=1,l++;
for(int i=0;i<limit;i++)r[i]=(r[i>>1]>>1)|((i&1)<<(l-1));
mtt();
for(int i=0;i<=n+m;i++)printf("%d ",(ans[i]+Mod)%Mod);
return 0;
}
题目
任意模数FFT的更多相关文章
- 【集训队作业2018】取名字太难了 任意模数FFT
题目大意 求多项式 \(\prod_{i=1}^n(x+i)\) 的系数在模 \(p\) 意义下的分布,对 \(998244353\) 取模. \(p\) 为质数. \(n\leq {10}^{18} ...
- 51nod 1172 Partial Sums V2 卡精度的任意模数FFT
卡精度的任意模数fft模板题……这道题随便写个表就能看出规律来(或者说考虑一下实际意义),反正拿到这题之后,很快就会发现他是任意模数fft模板题.然后我就去网上抄了一下板子……我打的是最土的任意模数f ...
- 51NOD 1258 序列求和 V4 [任意模数fft 多项式求逆元 伯努利数]
1258 序列求和 V4 题意:求\(S_m(n) = \sum_{i=1}^n i^m \mod 10^9+7\),多组数据,\(T \le 500, n \le 10^{18}, k \le 50 ...
- 拆系数FFT(任意模数FFT)
拆系数FFT 对于任意模数 \(mod\) 设\(m=\sqrt {mod}\) 把多项式\(A(x)\)和\(B(x)\)的系数都拆成\(a\times m+b\)的形式,时\(a, b\)都小于\ ...
- hdu 4656 Evaluation [任意模数fft trick]
hdu 4656 Evaluation 题意:给出\(n,b,c,d,f(x) = \sum_{i=1}^{n-1} a_ix^i\),求\(f(b\cdot c^{2k}+d):0\le k < ...
- 再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT)
再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT) 目录 再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Blueste ...
- 任意模数NTT
任意模数\(NTT\) 众所周知,为了满足单位根的性质,\(NTT\)需要质数模数,而且需要能写成\(a2^{k} + r\)且\(2^k \ge n\) 比较常用的有\(998244353,1004 ...
- 【模板】任意模数NTT
题目描述: luogu 题解: 用$fft$水过(什么$ntt$我不知道). 众所周知,$fft$精度低,$ntt$处理范围小. 所以就有了任意模数ntt神奇$fft$! 意思是这样的.比如我要算$F ...
- MTT:任意模数NTT
MTT:任意模数NTT 概述 有时我们用FFT处理的数据很大,而模数可以分解为\(a\cdot 2^k+1\)的形式.次数用FFT精度不够,用NTT又找不到足够大的模数,于是MTT就应运而生了. MT ...
随机推荐
- UML回顾暨课程总结
本文作为OO的最后一次博客作业,主要回顾了第四单元的架构设计和本学期的心路历程. 本单元架构设计 UML1 第一次作业的主要内容是解析mdj格式输入,记录特定数据并支持针对类.属性和方法等的查询功 ...
- python3基础之“函数(2)”
1.def:定义一个函数 def f(x): return x+1 #返回函数值 a=f(2) print(a) >>3 def even_odd(x): if x%2==0: " ...
- Bootstrap 结合 PHP ,做简单的登录以及注册界面及功能
登录实现 HTML代码 <div class="container"> <?php if (isset($error_msg)): ?> <div c ...
- SQL+C#:一次多语言混合编程的经验总结
1.用JAVA做,采取轮询策略: 2.用sql语言+C#混合编程,采取触发策略
- 大数据的前世今生【Hadoop、Spark】
一.大数据简介 大数据是一个很热门的话题,但它是什么时候开始兴起的呢? 大数据[big data]这个词最早在UNIX用户协会的会议上被使用,来自SGI公司的科学家在其文章“大数据与下一代基础架构 ...
- elementUI——主题定制
需求: 设计三套主题色+部分图标更换: 实现方式汇总: 1.传统做法,生成多套css主题包,切换link引入路径切换href实现,参考网站:http://jui.org/: <link id=& ...
- Android自动化测试探索(四)uiautomator2简介和使用
uiautomator2简介 项目Git地址: https://github.com/openatx/uiautomator2 安装 #1. 安装 uiautomator2 使用pip进行安装, 注意 ...
- 快速入门 Python 数据分析实用指南
Python 现如今已成为数据分析和数据科学使用上的标准语言和标准平台之一.那么作为一个新手小白,该如何快速入门 Python 数据分析呢? 下面根据数据分析的一般工作流程,梳理了相关知识技能以及学习 ...
- CPN tools 帮助文档资料和实例
1.替代变迁 包含有替代变迁的页面叫做父页,当CPN网使用替代变迁的时候,替代变迁所表达的逻辑必须在某一个位置得到实现,实现替代变迁逻辑页面叫做子页或者子网. 将替代变迁相邻的库所叫做槽库所,也即是在 ...
- 防火墙firewall
开放端口 firewall-cmd --zone=public --add-port=80/tcp firewall-cmd --zone=public --add-port=80 ...