任意模数FFT

这是一个神奇的魔法,但是和往常一样,在这之前,先

\(\texttt{orz}\ \color{orange}{\texttt{matthew99}}\)

问题描述

给定 2 个多项式 \(F(x), G(x)\) ,请求出 \(F(x) * G(x)\)。

系数对 p 取模,\(2 \le p \le 10^9+9\)

拆系数FFT

我们考虑令\(M\)为\(\sqrt{p}\),那么我们可以将原本的多项式拆成4个。

\(F(x)=A(x)*M+B(x)\)

\(G(X)=C(X)*M+D(x)\)

然后\(A\),\(B\),\(C\),\(D\)随便乘一下就可以求出答案。

这样需要的\(FFT\)次数为7次。

合并FFT

我们思考一下有没有什么优化的方法呢?

令\(P(x)=A(x)+iB(x)\),\(Q(x)=A(x)-iB(x)\)

\(F_p[k]\)和\(F_q[k]\)分别表示\(P\)和\(Q\)做了\(DFT\)后的\(k\)项系数。

推一推式子可以发现\(F_q[k]=conj(F_p[2L-k])\)。

那么我们只需要1遍\(DFT\)就可以求出这两个东西。

此时我们把模意义下的多项式乘法转换成了复数意义下的多项式乘法,就只需要按照\(FFT\)的过程实现。

把实部与虚部合并即可。

注意此时\(FFT\)的精度十分爆炸,所以用\(long\ double\)并预处理单位根比较好。

/*
mail: mleautomaton@foxmail.com
author: MLEAutoMaton
This Code is made by MLEAutoMaton
*/
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<algorithm>
#include<queue>
#include<set>
#include<map>
#include<iostream>
using namespace std;
#define ll long long
#define re register
#define file(a) freopen(a".in","r",stdin);freopen(a".out","w",stdout)
inline int gi()
{
int f=1,sum=0;char ch=getchar();
while(ch>'9' || ch<'0'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0' && ch<='9'){sum=(sum<<3)+(sum<<1)+ch-'0';ch=getchar();}
return f*sum;
}
const int N=1000010;const long double Pi=acos(-1.0);
int n,m,f[N],g[N],Mod;
struct node
{
long double x,y;
node operator+(const node &b)const{return (node){x+b.x,y+b.y};}
node operator-(const node &b)const{return (node){x-b.x,y-b.y};}
node operator*(const node &b)const{return (node){x*b.x-y*b.y,x*b.y+y*b.x};}
};
int r[N],limit,ans[N];
void fft(node *a,int opt)
{
for(int i=0;i<limit;i++)
if(i<r[i])swap(a[i],a[r[i]]);
for(int mid=1;mid<limit;mid<<=1)
{
node Root=(node){cos(Pi/mid),opt*sin(Pi/mid)};
for(int R=mid<<1,i=0;i<limit;i+=R)
{
node W=(node){1,0};
for(int j=0;j<mid;j++,W=W*Root)
{
node X=a[i+j],Y=W*a[mid+i+j];
a[i+j]=X+Y;a[mid+i+j]=X-Y;
}
}
}
}
node a[N],b[N],c[N],d[N];
void mtt()
{
int LIM=(1<<15)-1;
for(int i=0;i<=n;i++)f[i]=(f[i]+Mod)%Mod;for(int i=0;i<=m;i++)g[i]=(g[i]+Mod)%Mod;
for(int i=0;i<=n;i++)a[i]=(node){f[i]&LIM,f[i]>>15};
for(int i=0;i<=m;i++)b[i]=(node){g[i]&LIM,g[i]>>15};
fft(a,1);fft(b,1);
for(int i=0;i<limit;i++)c[i]=a[i],d[i]=b[i];
for(int i=0;i<limit;i++)
{
int j=(limit-i)&(limit-1);
a[i]=(node){0.5*(c[i].x+c[j].x),0.5*(c[i].y-c[j].y)}*d[i];
b[i]=(node){0.5*(c[i].y+c[j].y),0.5*(c[j].x-c[i].x)}*d[i];
}
fft(a,-1);fft(b,-1);
for(int i=0;i<limit;i++)
{
ll ia,ib,ic,id;
ia=(ll)(a[i].x/limit+0.5)%Mod;
ib=(ll)(a[i].y/limit+0.5)%Mod;
ic=(ll)(b[i].x/limit+0.5)%Mod;
id=(ll)(b[i].y/limit+0.5)%Mod;
ans[i]=((ia%Mod+((ib+ic)%Mod<<15))%Mod+(id%Mod<<30))%Mod;
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("in.in","r",stdin);
#endif
n=gi();m=gi();Mod=gi();
for(int i=0;i<=n;i++)f[i]=gi();for(int i=0;i<=m;i++)g[i]=gi();
limit=1;int l=0;
while(limit<=(n+m))limit<<=1,l++;
for(int i=0;i<limit;i++)r[i]=(r[i>>1]>>1)|((i&1)<<(l-1));
mtt();
for(int i=0;i<=n+m;i++)printf("%d ",(ans[i]+Mod)%Mod);
return 0;
}

题目

任意模数NTT

Shell Necklace

任意模数FFT的更多相关文章

  1. 【集训队作业2018】取名字太难了 任意模数FFT

    题目大意 求多项式 \(\prod_{i=1}^n(x+i)\) 的系数在模 \(p\) 意义下的分布,对 \(998244353\) 取模. \(p\) 为质数. \(n\leq {10}^{18} ...

  2. 51nod 1172 Partial Sums V2 卡精度的任意模数FFT

    卡精度的任意模数fft模板题……这道题随便写个表就能看出规律来(或者说考虑一下实际意义),反正拿到这题之后,很快就会发现他是任意模数fft模板题.然后我就去网上抄了一下板子……我打的是最土的任意模数f ...

  3. 51NOD 1258 序列求和 V4 [任意模数fft 多项式求逆元 伯努利数]

    1258 序列求和 V4 题意:求\(S_m(n) = \sum_{i=1}^n i^m \mod 10^9+7\),多组数据,\(T \le 500, n \le 10^{18}, k \le 50 ...

  4. 拆系数FFT(任意模数FFT)

    拆系数FFT 对于任意模数 \(mod\) 设\(m=\sqrt {mod}\) 把多项式\(A(x)\)和\(B(x)\)的系数都拆成\(a\times m+b\)的形式,时\(a, b\)都小于\ ...

  5. hdu 4656 Evaluation [任意模数fft trick]

    hdu 4656 Evaluation 题意:给出\(n,b,c,d,f(x) = \sum_{i=1}^{n-1} a_ix^i\),求\(f(b\cdot c^{2k}+d):0\le k < ...

  6. 再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT)

    再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT) 目录 再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Blueste ...

  7. 任意模数NTT

    任意模数\(NTT\) 众所周知,为了满足单位根的性质,\(NTT\)需要质数模数,而且需要能写成\(a2^{k} + r\)且\(2^k \ge n\) 比较常用的有\(998244353,1004 ...

  8. 【模板】任意模数NTT

    题目描述: luogu 题解: 用$fft$水过(什么$ntt$我不知道). 众所周知,$fft$精度低,$ntt$处理范围小. 所以就有了任意模数ntt神奇$fft$! 意思是这样的.比如我要算$F ...

  9. MTT:任意模数NTT

    MTT:任意模数NTT 概述 有时我们用FFT处理的数据很大,而模数可以分解为\(a\cdot 2^k+1\)的形式.次数用FFT精度不够,用NTT又找不到足够大的模数,于是MTT就应运而生了. MT ...

随机推荐

  1. 4.linux下配置Golang的环境变量

    装好linux后优先在linux上配置Golang开发环境. 1.到Go语言中文网下载Linux安装包 https://studygolang.com/dl 2.到下载的目录下解压,下载的文件一般在“ ...

  2. css实现 textarea 高度自适应

    此textarea非彼textarea ,有经验的老司机们应该知道html标签contenteditable这个属性. 利用此属性使当前的标签成为可以输入的状态,等同于输入框. 演示地址:https: ...

  3. session 在PC端正常设置读取,在移动端无法正常读取

    一.背景 最近在做一个面向三端[H5.IOS.安卓]的短信验证码登录接口.发送短信验证码时,服务端通过 session 保存验证码的值.登录时,从 session 获取验证码和用户输入的验证码 相比较 ...

  4. 通过 Web Deploy 发布的配置

    罩着别人的配置弄了一下午,死活认证通不过,后来好不容易试出来,备忘. 服务端:安装IIS,启动管理程序,安装Web Deploy, 建立网站,建立IIS用户,进网站的权限管理里面给IIS用户授权. V ...

  5. Android目前流行三方数据库ORM分析及对比

    Android 平台上的数据库框架非常多,但是有一个共同特点就是基于对象关系映射(ORM)模型的.实现的目标也都是不需要写SQL语句,通过对对象的操作保存和操作数据.要是从语法的简洁性来说都有自己的特 ...

  6. 版本管理工具Git三种工作流

    Git是分布式版本管理控制的工具.学习Git一般都是先去学习Git的命令. 但是学习完Git的基本命令之后还是不知道怎样使用Git.首先,我们要清楚的 一点是Git的使用方法其实有很多种,也就是说Gi ...

  7. DBUtils模块

    Python 中的数据库连接池 DBUtils是Python的一个用于实现数据库连接池的模块. 有两种模式 模式一:为每个线程创建一个连接,线程即使调用了close方法,也不会关闭,只是把连接重新放到 ...

  8. Linux命令——du

    参考:10 Useful du (Disk Usage) Commands to Find Disk Usage of Files and Directories 前言 du(Disk Usage), ...

  9. mysql 创建新用户 并赋予权限

    1.以管理员身份登录mysql mysql -u root -p 2.选择mysql数据库 use mysql 3.创建用户并设定密码 create user 'testuser'@'localhos ...

  10. Centos 7.6 双网卡绑定实现高可用

    Centos 7.6 双网卡绑定实现高可用 作者:尹正杰 版权声明:原创作品, 谢绝转载!否则将追究法律责任. 一.Bond模式概述 当linux系统上有多个单独网卡,又想充分利用这些网卡,同时对外提 ...