Language Modeling with Gated Convolutional Networks(句子建模之门控CNN)--模型简介篇
最近忙着实验室的项目,一直没有时间做仿真,所以就先写一下之前看的一篇文章,总结一下吧。这次要说的是Gated CNN,这也是第一次将门限控制引入到CNN中的文章,感觉十分有新意,效果也很棒。下面我们来看一下,文章的主要贡献包括:
- 提出一种新的门控机制
- 缓解梯度传播,降低梯度弥散等现象
- 相比LSTM,模型更加简单,收敛速度更快
模型的结构图如下所示:
首先我们可以通过堆叠CNN来标识长文本,提取更高层、更抽象的特征,而且相比LSTM而言,我们需要的op更少(CNN需要O(N/k)个op,而LSTM将文本视为序列需要O(N)个op,其中N为文本长度,k为卷积核宽度),这样一来,我们需要的非线性操作也更少,有效地降低了梯度弥散的现象,使模型收敛和训练变得更加简单。此外,LSTM中模型下一时刻的输出依赖于前一个时刻的隐藏层状态,无法实现模型并行化。但是,CNN无需这种依赖,可以方便的实现并行化,从而实现计算速度的提升。最后,本文中提出的线性门控单元不仅有效地降低了梯度弥散,而且还保留了非线性的能力。接下来我们看一下模型的具体实现方法:
从上图可以看出,其主要结构跟原始的CNN并无很大差异,只不过在卷积层引入了门控机制,将卷积层的输出变成了下面的公式,即一个没有非线性函数的卷积层输出*经过sigmod非线性激活函数的卷积层输出:
其中W和V是不同的卷积核,卷积核宽度为k,输出通道数为n,b和c是偏置参数。而且这里使用的是宽卷积,但是论文中对于使用宽卷积的原因的描述我没有看太懂=-=。上面公式中的后半部分,即有激活函数的卷积就是所谓的门控机制,其控制了X*W+b中哪些信息可以传入下一层。这里将其定义为Gated Linear Units (GLU).然后就可以将该模型进行堆叠,以捕获Long_Term memory。
文中还论述了关于不同门控单元的效果,首先其提出CNN中不需要像LSTM那样复杂的门限机制,不需要忘记门,一个输入门就足够了。此外,还提出了另外一种门控单元GTU,如下所示:
作者从梯度的角度对两种门控单元进行了分析,发现GTU会衰减的比较快,因为其梯度公式中包含两个衰减项。而GLU只有一个衰减项,可以较好地减轻梯度弥散。
实验结果
实验用了WikiText-103和GBW两个数据集,结果这里仅展示几个图表:
一个细节就是,对于文本长度更大的数据集而言,论文使用了更深的网络结构以获取其Long-Term记忆。
Language Modeling with Gated Convolutional Networks(句子建模之门控CNN)--模型简介篇的更多相关文章
- Language Modeling with Gated Convolutional Networks
语言模型 所谓的语言模型,即是指在得知前面的若干个单词的时候,下一个位置上出现的某个单词的概率. 最朴素的方法是N-gram语言模型,即当前位置只和前面N个位置的单词相关.如此,问题便是,N小了,语言 ...
- 【论文笔记】Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition
Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition 2018-01-28 15:4 ...
- FlowNet: Learning Optical Flow with Convolutional Networks
作者:嫩芽33出处:http://www.cnblogs.com/nenya33/p/7122701.html 版权:本文版权归作者和博客园共有 转载:欢迎转载,但未经作者同意,必须保留此段声明:必须 ...
- 卷积神经网络(CNN)在句子建模上的应用
之前的博文已经介绍了CNN的基本原理,本文将大概总结一下最近CNN在NLP中的句子建模(或者句子表示)方面的应用情况,主要阅读了以下的文献: Kim Y. Convolutional neural n ...
- RNN and Language modeling in TensorFlow
RNNs and Language modeling in TensorFlow From feed-forward to Recurrent Neural Networks (RNNs) In th ...
- 【注意力机制】Attention Augmented Convolutional Networks
注意力机制之Attention Augmented Convolutional Networks 原始链接:https://www.yuque.com/lart/papers/aaconv 核心内容 ...
- Recurrent Neural Network Language Modeling Toolkit代码学习
Recurrent Neural Network Language Modeling Toolkit 工具使用点击打开链接 本博客地址:http://blog.csdn.net/wangxingin ...
- Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition (ST-GCN)
Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition 摘要 动态人体骨架模型带有进行动 ...
- Emotion Recognition Using Graph Convolutional Networks
Emotion Recognition Using Graph Convolutional Networks 2019-10-22 09:26:56 This blog is from: https: ...
随机推荐
- 服务网关ZuulFilter过滤器--如何解决跨域请求中的OPTIONS请求
进行跨域请求的时候,并且请求头中有额外参数,比如token,客户端会先发送一个OPTIONS请求 来探测后续需要发起的跨域POST请求是否安全可接受 所以这个请求就不需要拦截,下面是处理方式 @Ove ...
- java web编程 servlet读取配置文件参数
新建一个servlet. 然后在web.xml文件里面自动帮助你创建好了<servlet-name><servlet-class><servlet-mapping> ...
- 【scala】scala安装测试
下载安装scala:scala-2.13.1.tgz 解压: [hadoop@hadoop01 ~]$ tar -zxvf scala-2.13.1.tgz 查看目录: [hadoop@hadoop0 ...
- MySQL Lock--MySQL加锁学习2
准备测试数据: ## 开启InnoDB Monitor SET GLOBAL innodb_status_output=ON; SET GLOBAL innodb_status_output_lock ...
- ScheduledExecutorService周期性的定时任务
从j2se的api文档上查看ScheduledExecutorService的方法都是推迟一段时间然后相隔一段时间之后再去执行,没有想Timer定时器一样的可以在定点时间执行的api,如果也想像Tim ...
- 04 -- 元类和ORM
本篇主要介绍元类,为什么说一切皆对象:如何动态的创建类等:以及ORM,即什么是ORM等知识 一.元类 1.1 在Python中一切皆对象 在学习元类中我们首先需要了解一个概念-- python中一切皆 ...
- Windows通过SSH远程登录Linux主机
准备工作:1.Windows系统下装有VMware虚拟机且是Linux系统2.终端连接工具Xshell 63.本次实验系统IP如下 系统 IP Windows10 192.168.37.111 Cen ...
- "人工智能",你怕了吗?
近期“人工智能+”,已经是市场上非常火的一个风口,人工智能已经渗透到人类生活的方方面面,服务于我们的生活.但是人工智能的迅速发展,也引起了我的担忧,一系列科技电影展示出来的人工智能奴役人类的场景,让人 ...
- python3 操作 hive 安装依赖包整理
安装依赖pip install saslpip install thriftpip install thrift-saslpip install PyHive windows安装sasl报错,解决方案 ...
- Java精通并发-同步方法访问标志与synchronized关键字之间的关系
继续基于上一次https://www.cnblogs.com/webor2006/p/11428811.html来研究synchronized关键字在字节码中的表现,在上一次文末提出了一个这样的问题: ...