洛谷P2216 理想的正方形(单调队列)
洛谷P2216 理想的正方形
思路:
直接暴力显然不可行,可以发现每一个矩形向右边扩展时是一列一列增加,于是可以想到单调队列,用数组来维护当前每列的最大值。因为行也有限制,所以还要用一个单调队列来维护行的信息。
做法大概就是每次扩展一行,然后求出每一列当前的最大值,之后再一列一列来搞。
详见代码吧:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 1005, M = 105;
int a, b, n;
int mp[N][N], tmp[N][2];
int q1[N][N], l1[N], r1[N], q2[N][N], l2[N], r2[N];
int Q1[N], Q2[N];
int main() {
ios::sync_with_stdio(false); cin.tie(0) ;
cin >> a >> b >> n;
for(int i = 1; i <= a; i++) for(int j = 1; j <= b; j++) cin >> mp[i][j] ;
for(int i = 1; i <= b; i++) l1[i] = l2[i] = 1;
int ans = 2e9;
for(int i = 1; i <= a; i++) {
for(int j = 1; j <= b; j++) {
while(l1[j] <= r1[j] && mp[q1[j][r1[j]]][j] <= mp[i][j]) r1[j]--;
q1[j][++r1[j]] = i ;
while(l2[j] <= r2[j] && mp[q2[j][r2[j]]][j] >= mp[i][j]) r2[j]--;
q2[j][++r2[j]] = i ;
while(l1[j] <= r1[j] && i + 1 - q1[j][l1[j]] > n) l1[j]++;
while(l2[j] <= r2[j] && i + 1 - q2[j][l2[j]] > n) l2[j]++;
}
for(int j = 1; j <= b; j++) tmp[j][0] = mp[q1[j][l1[j]]][j], tmp[j][1] = mp[q2[j][l2[j]]][j];
int mx = 0, mn = 1e9 + 1;
int cc1, cc2;
int L1 = 1, R1 = 0, L2 = 1, R2 = 0;
for(int j = 1; j <= b; j++) {
while(L1 <= R1 && tmp[Q1[R1]][0] <= tmp[j][0]) R1--;
while(L2 <= R2 && tmp[Q2[R2]][1] >= tmp[j][1]) R2--;
Q1[++R1] = j ;
Q2[++R2] = j ;
while(L1 <= R1 && j + 1 - Q1[L1] > n) L1++;
while(L2 <= R2 && j + 1 - Q2[L2] > n) L2++;
if(i >= n && j >= n) ans = min(ans, tmp[Q1[L1]][0] - tmp[Q2[L2]][1]);
// cout << i << ' ' << Q1[L1] << ' ' << Q2[L2] << '\n';
}
// cout << "---------------" << '\n' ;
}
cout << ans;
return 0;
}
/*
5 4 2
1 2 3 4
5 6 7 8
9 8 7 6
1 3 2 3
1 2 3 4
*/
洛谷P2216 理想的正方形(单调队列)的更多相关文章
- 洛谷P2216 理想的正方形
题目描述 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入输出格式 输入格式: 第一行为3个整数,分别表示a,b,n的值 第二行至 ...
- 洛谷 [P2216] 理想的正方形
二维单调队列 先横向跑一边单调队列,记录下每一行长度为n的区间的最值 在纵向跑一边单调队列,得出结果 注意,mi要初始化为一个足够大的数 #include <iostream> #incl ...
- 【BZOJ】4721: [Noip2016]蚯蚓 / 【洛谷】P2827 蚯蚓(单调队列)
Description 本题中,我们将用符号[c]表示对c向下取整,例如:[3.0」= [3.1」=[3.9」=3.蛐蛐国最近蚯蚓成灾了!隔壁跳 蚤国的跳蚤也拿蚯蚓们没办法,蛐蛐国王只好去请神刀手来帮 ...
- 洛谷P2216: [HAOI2007]理想的正方形 单调队列优化DP
洛谷P2216 )逼着自己写DP 题意: 给定一个带有数字的矩阵,找出一个大小为n*n的矩阵,这个矩阵中最大值减最小值最小. 思路: 先处理出每一行每个格子到前面n个格子中的最大值和最小值.然后对每一 ...
- P2216 [HAOI2007]理想的正方形 (单调队列)
题目链接:P2216 [HAOI2007]理想的正方形 题目描述 有一个 \(a\times b\)的整数组成的矩阵,现请你从中找出一个 \(n\times n\)的正方形区域,使得该区域所有数中的最 ...
- BZOJ1047: [HAOI2007]理想的正方形 [单调队列]
1047: [HAOI2007]理想的正方形 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2857 Solved: 1560[Submit][St ...
- bzoj 1047 : [HAOI2007]理想的正方形 单调队列dp
题目链接 1047: [HAOI2007]理想的正方形 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2369 Solved: 1266[Submi ...
- BZOJ 1047: [HAOI2007]理想的正方形( 单调队列 )
单调队列..先对每一行扫一次维护以每个点(x, y)为结尾的长度为n的最大最小值.然后再对每一列扫一次, 在之前的基础上维护(x, y)为结尾的长度为n的最大最小值. 时间复杂度O(ab) (话说还是 ...
- 洛谷.2219.[HAOI2007]修筑绿化带(单调队列)
题目链接 洛谷 COGS.24 对于大的矩阵可以枚举:对于小的矩阵,需要在满足条件的区域求一个矩形和的最小值 预处理S2[i][j]表示以(i,j)为右下角的C\(*\)D的矩阵和, 然后对于求矩形区 ...
随机推荐
- [HeadFrist-HTMLCSS学习笔记]第七、八章
[HeadFrist-HTMLCSS学习笔记]第七章CSS入门:加一点样式 重点噻 段落添加背景颜色 p{ background-color: red; } 文本颜色 p{ color: ,maroo ...
- gcc O2优化选项对内嵌汇编以及函数递归调用的影响
学习和使用c这些年来,很多方面都未深入研究过,就如脱离了IDE后,我可能连编译一个c文件的命令都写不出来. 最近需要在c中内嵌汇编解决问题,参考网上相关的资料写了一段汇编代码,在测试的时候时好时坏,找 ...
- SQL Server ----- 还原数据库,将另一台电脑上的数据库装在本机
1.创建好数据库,记住安装位置,,和需要还原的数据库的位置 还原数据库的意思就是 根据创建的数据库,还原备份的数据库,如果数据库中没有数据库要新建数据库. 2.进来后如图 3.找你需要的还原数据库的位 ...
- 在ASP.NET Core中获取客户端和服务器端的IP地址(转载)
随着ASP.NET的发展,有不同的方式从请求中访问客户端IP地址.WebForms和MVC Web应用程序只是访问当前HTTP上下文的请求. var ip = HttpContext.Current. ...
- VMwarm下安装ubuntu的一些问题
1.终端无法输入中文的原因(未实践) 原文地址 2.Windows10下VMwarm(V15.5)和ubuntu14.04实现复制文件(已经实践) 转载路径
- ASP.NET Core 2.0升级到3.0的变化和问题
前言 在.NET Core 2.0发布的时候,博主也趁热使用ASP.NET Core 2.0写了一个独立的博客网站,现如今恰逢.NET Core 3.0发布之际,于是将该网站进行了升级. 下面就记录升 ...
- (转)二步实现 远程连接 阿里云SqlServer 2012 数据库服务器
前言:在使用 阿里云 上的一些产品时,遇到不少坑. 安装IIS 时,遇到 因买的配置过低,虚拟内存不足,而导致 IIS 总是安装失败: 现在 在上面安装了个 Sql Sever 2012,远程老是 不 ...
- win7 VirtualBox E_FAIL (0x80004005)解决
环境:win7virtualbox 6.0.10 安装virtualbox6.0.10之后,新建一个centos虚拟机,提示启动任务失败 报错信息:返回代码: E_FAIL (0x80004005)组 ...
- rsync 排除指定目录
背景 将Server1上的数据同步到Server2: Server1目录结构: /us_data/yahoo └── qlib ├── calendars ├── dataset_cache ├── ...
- Matlab访问者模式
访问者(Visitor)模式的定义:将作用于某种数据结构中的各元素的操作分离出来封装成独立的类,使其在不改变数据结构的前提下可以添加作用于这些元素的新的操作,为数据结构中的每个元素提供多种访问方式.它 ...