P1006 传纸条

题目描述

小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题。一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了。幸运的是,他们可以通过传纸条来进行交流。纸条要经由许多同学传到对方手里,小渊坐在矩阵的左上角,坐标 (1,1),小轩坐在矩阵的右下角,坐标(m,n)。从小渊传到小轩的纸条只可以向下或者向右传递,从小轩传给小渊的纸条只可以向上或者向左传递。

在活动进行中,小渊希望给小轩传递一张纸条,同时希望小轩给他回复。班里每个同学都可以帮他们传递,但只会帮他们一次,也就是说如果此人在小渊递给小轩纸条的时候帮忙,那么在小轩递给小渊的时候就不会再帮忙。反之亦然。

还有一件事情需要注意,全班每个同学愿意帮忙的好感度有高有低(注意:小渊和小轩的好心程度没有定义,输入时用0表示),可以用一个0−100的自然数来表示,数越大表示越好心。小渊和小轩希望尽可能找好心程度高的同学来帮忙传纸条,即找到来回两条传递路径,使得这2条路径上同学的好心程度之和最大。现在,请你帮助小渊和小轩找到这样的2条路径。

输入格式

输入文件,第一行有2个用空格隔开的整数m和n,表示班里有m行n列。

接下来的m行是一个 \(m \times n\) 的矩阵,矩阵中第i行j列的整数表示坐在第ii行j列的学生的好心程度。每行的n个整数之间用空格隔开。

输出格式

输出文件共一行,包含一个整数,表示来回2条路上参与传递纸条的学生的好心程度之和的最大值。

输入输出样例

输入 #1

3 3

0 3 9

2 8 5

5 7 0

输出 #1

34

说明/提示

【限制】

30%的数据满足:\(1 \le m,n \le 10\)

100%的数据满足:\(1 \le m,n \le 50\)

NOIP 2008提高组第三题

【思路】

类似方格取数这一道题

都是走两遍

不过这个是从小渊到小轩一遍,和小轩到小渊一遍

但是可以看乘小渊到小轩两遍或者小轩到小渊两遍

这样就省去了很多的麻烦

然后就类比方格取数的思想

f(i,j,k,l)

i,j表示第一遍到达的位置,k,l表示第二遍到达的位置

这道题和方格取数不同的地方就是,

方格取数可以重复走一个点虽然可能结果回小但是是可以的

不过传纸条这道题目一个点只能走一遍

这就需要特殊处理了

可以在枚举最后以重循环也就是l的时候从j + 1开始枚 举,因为这样l就不可能会枚举到第一遍走过的点了

也可以压成三重循环然后在用i + j - k的公式求j的时候

判断一下如果l小于等于j了那就break掉

【公式的得出】

(因为这两次走的步数都是一样的,

所以第一次的步数等于i + j

那么只要知道k,就可以求出l

用i + j - k就可以求出)

【最终结论】

最后输出的结果不是f[n][m][n][m]

因为前面处理了一下不会走到同一个点

所走不到f[n][m][n][m]这个点,如果输出这个那输出的就一定是0

所以应该输出可以到达(n,m)的那两点

也就是(n - 1,m)和(n,m - 1)

转化为在f数组里面就是

f[n - 1][m][n][m - 1]

不过又因为前面枚举了l是大于j的

所以应该是(n,m - 1)在前,(n - 1,m)在后

不然无法满足l>j,那么最后输出的还是0

所以输出f[n][m - 1][n - 1][m]

【完整代码】

#include<iostream>
#include<cstdio> using namespace std;
const int Max = 55;
int a[Max][Max];
int f[Max][Max][Max][Max]; int main()
{
int n,m;
scanf("%d%d",&n,&m);
for(int i = 1;i <= n;++ i)
for(int j = 1;j <= m;++ j)
scanf("%d",&a[i][j]);
for(int i = 1;i <= n;++ i)
{
for(int j = 1;j <= m;++ j)
{
for(int k = 1;k <= n;++ k)
{
int l = i + j - k;
if(l <= j)
break;
f[i][j][k][l] = max(max(f[i][j - 1][k - 1][l],f[i][j - 1][k][l - 1]),max(f[i - 1][j][k - 1][l],f[i - 1][j][k][l - 1]));
f[i][j][k][l] += a[i][j] + a[k][l];
}
}
}
cout << f[n][m - 1][n - 1][m] << endl;
return 0;
}

洛谷 P1006 传纸条 题解的更多相关文章

  1. 棋盘DP三连——洛谷 P1004 方格取数 &&洛谷 P1006 传纸条 &&Codevs 2853 方格游戏

    P1004 方格取数 题目描述 设有N $\times N$N×N的方格图(N $\le 9$)(N≤9),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字00.如下图所示(见样例): A ...

  2. 洛谷 P1006 传纸条 多维DP

    传纸条详解: 蒟蒻最近接到了练习DP的通知,于是跑来试炼场看看:发现有点难(毕竟是蒟蒻吗)便去翻了翻题解,可怎么都看不懂.为什么呢?蒟蒻发现题解里都非常详细的讲了转移方程,讲了降维优化,但这题新颖之处 ...

  3. 洛谷p1006 传纸条 三维解法

    原题目如下 原地址https://www.luogu.com.cn/problem/P1006 题目描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做 ...

  4. [NOIP2008] 提高组 洛谷P1006 传纸条

    题目描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了.幸运的是 ...

  5. 【动态规划】洛谷P1006传纸条

    题目描述: 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了.幸运的 ...

  6. Codevs 1169 == 洛谷 P1006 传纸条

    ---恢复内容开始--- 1169 传纸条 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description 小渊和小轩是好朋友也是同班同学,他 ...

  7. 洛谷 P1006 传纸条

    题目描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了.幸运的是 ...

  8. 洛谷P1006 传纸条 (棋盘dp)

    好气,在洛谷上交就过了,在caioj上交就只有40分 之前在51nod做过这道题了. https://blog.csdn.net/qq_34416123/article/details/8180902 ...

  9. 洛谷P1006 传纸条(多维DP)

    小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个mm行nn列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了.幸运的是,他们 ...

随机推荐

  1. [LOJ2537] [PKUWC2018] Minimax

    题目链接 LOJ:https://loj.ac/problem/2537 洛谷:https://www.luogu.org/problemnew/show/P5298 Solution 不定期诈尸 好 ...

  2. springboot 2.1.3.RELEASE添加filter,servlet源码学习

    Servlet规范中,通过ServeltContext来注册Filter.Servlet,这里分析Filter,Servlet是相同逻辑 springboot2.0中,我们通过 FilterRegis ...

  3. spring boot打包,依赖、配置文件分离,拷贝启动脚本

    一.最终打包的目录结构 二.项目结构 三.开始 1.最终打包的目录,可根据自己需要修改. <properties> <mzservice.path>${project.buil ...

  4. Java NIO和IO的区别

    下表总结了Java NIO和IO之间的主要差别,我会更详细地描述表中每部分的差异. 复制代码 代码如下: IO NIO面向流 面向缓冲阻塞IO 非阻塞IO无 选择器 面向流与面向缓冲 Java NIO ...

  5. jmeter进行压测的步骤

    1)安装jmeter和Badboy. 2)用badboy录制脚本,保存之后直接导出. 3)用jmeter打开badboy录制的脚本,假如是有参数的话,需要写一个csv的参数化文件,在jmeter中添加 ...

  6. JavaScript之变量

    var a; // 声明变量a,变量:值可以改变的,相当于数学x,y,z... a=10; // 将10赋值给a var test; var Test; /* 变量命名规则: 1.不能以数字开头 2. ...

  7. SQL SERVER-Alwayson原理

    流程 1.异步提交模式 主副本无须确认该副本已经完成日志固化,就可提交事务. 主副本不受辅助副本的影响 辅助副本上的DB处于SYNCHRONIZING 2.同步提交模式 主副本要确认副本已经完成日志固 ...

  8. php与ajax技术

    web2.0的到来,ajax逐渐成为主流,什么是ajax,ajax的开发模式,优点,使用技术.(ajax概述,ajax使用的技术,需要注意的 问题,在PHP应用ajax技术的应用) 什么是ajax,a ...

  9. USB之基本协议和数据波形1

    =============  本系列参考  ============= <圈圈教你玩USB>.<Linux那些事儿之我是USB> 协议文档:https://www.usb.or ...

  10. mysql 登录报错

    执行命令:mysql -u root -p 错误:error while loading shared libraries: libncurses.so.5: cannot open shared o ...