OpenCV 学习笔记(0)两幅图像标定配准
参考教程
依赖opencv扩展库,使用sifi匹配
保存配准信息
"./config/calibratedPara.yaml"
#include <iostream>
#include<opencv2/highgui/highgui.hpp>
#include<opencv2/imgproc/imgproc.hpp>
#include <opencv2/opencv.hpp>
#include<opencv2/xfeatures2d.hpp>
#include<opencv2/core/core.hpp> #define PATH_XMAL "./config/calibratedPara.yaml"
#define IMG_WIDTH 2592//2592
#define IMG_HEIGHT 1944//2048 using namespace cv;
using namespace std;
using namespace cv::xfeatures2d;//只有加上这句命名空间,SiftFeatureDetector and SiftFeatureExtractor才可以使用 /******************************************************
*name :Rect CalcCorners(const Mat& H, const Mat& src)
*function :通过H计算图片角点位置,返回左上和宽高
*time :2019-4-28
********************************************************/
Rect CalcCorners(const Mat& H, const Mat& src)
{
double v1[3];
Mat _V1 = Mat(3, 1, CV_64FC1, v1);
//左上角(0,0,1)
Mat _V2 = (Mat_<double>(3, 1) << 0, 0, 1);
_V1 = H * _V2;
Point _left_top;
_left_top.x = v1[0] / v1[2];
_left_top.y = v1[1] / v1[2];
//左下角(0,src.rows,1)
_V2 = (Mat_<double>(3, 1) << 0, src.rows, 1);
_V1 = H * _V2;
Point _left_bottom;
_left_bottom.x = v1[0] / v1[2];
_left_bottom.y = v1[1] / v1[2];
//右上角(src.cols,0,1)
_V2 = (Mat_<double>(3, 1) << src.cols, 0, 1);
_V1 = H * _V2;
Point _right_top;
_right_top.x = v1[0] / v1[2];
_right_top.y = v1[1] / v1[2];
//右下角(src.cols,src.rows,1)
_V2 = (Mat_<double>(3, 1) << src.cols, src.rows, 1);
_V1 = H * _V2;
Point _right_bottom;
_right_bottom.x = v1[0] / v1[2];
_right_bottom.y = v1[1] / v1[2];
int _x1 = (int)max(_left_bottom.x, _left_top.x);
int _y1 = (int)max(_left_top.y, _right_top.y);
int _x2 = (int)min(_right_top.x, _right_bottom.x);
int _y2 = (int)min(_left_bottom.y, _right_bottom.y); cout << "point is " << _x1 << " " << _y1 << " " << _x2 << " " << _y2 << endl;
if (_x2 > IMG_WIDTH) _x2 = IMG_WIDTH - 1;
if (_y2 > IMG_HEIGHT) _y2 = IMG_HEIGHT - 1;
if (_x1 < 0) _x1 = 0;
if (_y1 < 0) _y1 = 0; cout << "point is " << _x1 << " " << _y1 << " " << _x2 << " " << _y2 << endl; return Rect(Point(_x1, _y1), Point(_x2, _y2)); //表示左上点和右下点
} Rect inscrRect;
cv::Mat warpedPic;
cv::Mat Homography;
Mat compicCalibrate; int main()
{
//Create SIFT class pointer
Ptr<Feature2D> f2d = xfeatures2d::SIFT::create();
//SiftFeatureDetector siftDetector;
//Loading images
Mat img_1 = imread("1.bmp");
Mat img_2 = imread("2.bmp");
if (!img_1.data || !img_2.data)
{
cout << "Reading picture error!" << endl;
return false;
}
//Detect the keypoints
double t0 = getTickCount();//当前
vector<KeyPoint> keypoints_1, keypoints_2;
f2d->detect(img_1, keypoints_1);
f2d->detect(img_2, keypoints_2);
cout << "The keypoints number of img1 is:" << keypoints_1.size() << endl;
cout << "The keypoints number of img2 is:" << keypoints_2.size() << endl;
//Calculate descriptors (feature vectors)
Mat descriptors_1, descriptors_2;
f2d->compute(img_1, keypoints_1, descriptors_1);
f2d->compute(img_2, keypoints_2, descriptors_2);
double freq = getTickFrequency();
double tt = ((double)getTickCount() - t0) / freq;
cout << "Extract SIFT Time:" << tt << "ms" << endl;
//画关键点
Mat img_keypoints_1, img_keypoints_2;
drawKeypoints(img_1, keypoints_1, img_keypoints_1, Scalar::all(-1), 0);
drawKeypoints(img_2, keypoints_2, img_keypoints_2, Scalar::all(-1), 0);
//imshow("img_keypoints_1",img_keypoints_1);
//imshow("img_keypoints_2",img_keypoints_2); //Matching descriptor vector using BFMatcher
BFMatcher matcher;
vector<DMatch> matches;
matcher.match(descriptors_1, descriptors_2, matches);
cout << "The number of match:" << matches.size() << endl;
//绘制匹配出的关键点
Mat img_matches;
drawMatches(img_1, keypoints_1, img_2, keypoints_2, matches, img_matches);
//imshow("Match image",img_matches);
//计算匹配结果中距离最大和距离最小值
double min_dist = matches[0].distance, max_dist = matches[0].distance;
for (int m = 0; m < matches.size(); m++)
{
if (matches[m].distance<min_dist)
{
min_dist = matches[m].distance;
}
if (matches[m].distance>max_dist)
{
max_dist = matches[m].distance;
}
}
cout << "min dist=" << min_dist << endl;
cout << "max dist=" << max_dist << endl;
//筛选出较好的匹配点
vector<DMatch> goodMatches;
for (int m = 0; m < matches.size(); m++)
{
if (matches[m].distance < 0.6*max_dist)
{
goodMatches.push_back(matches[m]);
}
}
cout << "The number of good matches:" << goodMatches.size() << endl;
//画出匹配结果
Mat img_out;
//红色连接的是匹配的特征点数,绿色连接的是未匹配的特征点数
//matchColor – Color of matches (lines and connected keypoints). If matchColor==Scalar::all(-1) , the color is generated randomly.
//singlePointColor – Color of single keypoints(circles), which means that keypoints do not have the matches.If singlePointColor == Scalar::all(-1), the color is generated randomly.
//CV_RGB(0, 255, 0)存储顺序为R-G-B,表示绿色
drawMatches(img_1, keypoints_1, img_2, keypoints_2, goodMatches, img_out, Scalar::all(-1), CV_RGB(0, 0, 255), Mat(), 2);
namedWindow("good Matches", 0);
imshow("good Matches", img_out);
//RANSAC匹配过程
vector<DMatch> m_Matches;
m_Matches = goodMatches;
int ptCount = goodMatches.size();
if (ptCount < 100)
{
cout << "Don't find enough match points" << endl;
return 0;
} //坐标转换为float类型
vector <KeyPoint> RAN_KP1, RAN_KP2;
//size_t是标准C库中定义的,应为unsigned int,在64位系统中为long unsigned int,在C++中为了适应不同的平台,增加可移植性。
for (size_t i = 0; i < m_Matches.size(); i++)
{
RAN_KP1.push_back(keypoints_1[goodMatches[i].queryIdx]);
RAN_KP2.push_back(keypoints_2[goodMatches[i].trainIdx]);
//RAN_KP1是要存储img01中能与img02匹配的点
//goodMatches存储了这些匹配点对的img01和img02的索引值
}
//坐标变换
vector <Point2f> p01, p02;
for (size_t i = 0; i < m_Matches.size(); i++)
{
p01.push_back(RAN_KP1[i].pt);
p02.push_back(RAN_KP2[i].pt);
}
/*vector <Point2f> img1_corners(4);
img1_corners[0] = Point(0,0);
img1_corners[1] = Point(img_1.cols,0);
img1_corners[2] = Point(img_1.cols, img_1.rows);
img1_corners[3] = Point(0, img_1.rows);
vector <Point2f> img2_corners(4);*/
////求转换矩阵
//Mat m_homography;
//vector<uchar> m;
//m_homography = findHomography(p01, p02, RANSAC);//寻找匹配图像
//求基础矩阵 Fundamental,3*3的基础矩阵
vector<uchar> RansacStatus;
Mat Fundamental = findFundamentalMat(p01, p02, RansacStatus, FM_RANSAC);
//重新定义关键点RR_KP和RR_matches来存储新的关键点和基础矩阵,通过RansacStatus来删除误匹配点
vector <KeyPoint> RR_KP1, RR_KP2;
vector <DMatch> RR_matches;
int index = 0;
for (size_t i = 0; i < m_Matches.size(); i++)
{
if (RansacStatus[i] != 0)
{
RR_KP1.push_back(RAN_KP1[i]);
RR_KP2.push_back(RAN_KP2[i]);
m_Matches[i].queryIdx = index;
m_Matches[i].trainIdx = index;
RR_matches.push_back(m_Matches[i]);
index++;
}
}
cout << "RANSAC后匹配点数" << RR_matches.size() << endl;
Mat img_RR_matches;
drawMatches(img_1, RR_KP1, img_2, RR_KP2, RR_matches, img_RR_matches);
namedWindow("After RANSAC", 0);
imshow("After RANSAC", img_RR_matches);
//等待任意按键按下
waitKey(1); vector<cv::Point2f> Pic1Point, Pic2Point;
for (int i = 0; i < RR_matches.size(); i++)
{
Pic1Point.push_back(RR_KP1[RR_matches[i].queryIdx].pt);
Pic2Point.push_back(RR_KP2[RR_matches[i].trainIdx].pt);
} Homography = cv::findHomography(Pic1Point, Pic2Point, CV_RANSAC); //计算将p2投影到p1上的单映性矩阵 FileStorage fs(PATH_XMAL, FileStorage::WRITE); //单应矩阵保存
fs << "Homography" << Homography; warpPerspective(img_1, warpedPic, Homography, cv::Size(img_2.cols, img_2.rows));//第一路图像根据参数Homography变换映射到warpedPic图
inscrRect = CalcCorners(Homography, img_1);// 第一路图像根据参数Homography计算本土映射区域的起始点和宽高
fs << "inscrRect" << inscrRect;//保存在xml
fs.release(); Rect cutRoi(inscrRect.x, inscrRect.y, inscrRect.width, inscrRect.height);// 定义一个抠图区域
Mat Pic1Roi = warpedPic(cutRoi).clone();//第一张变换图扣出对应区域 compicCalibrate.create(inscrRect.height, inscrRect.width * 2, CV_8UC3); // Mat Pic1Roi = warpedPic(inscrRect);
Mat Pic2Roi = img_2(inscrRect);
Pic1Roi.copyTo(compicCalibrate(Rect(0, 0, Pic1Roi.cols, Pic1Roi.rows)));
Pic2Roi.copyTo(compicCalibrate(Rect(Pic1Roi.cols, 0, Pic2Roi.cols, Pic2Roi.rows)));
namedWindow("martch", 0);
imshow("martch", compicCalibrate);
waitKey(0);
}
OpenCV 学习笔记(0)两幅图像标定配准的更多相关文章
- 【OpenCV学习】计算两幅图像的重叠区域
问题描述:已知两幅图像Image1和Image2,计算出两幅图像的重叠区域,并在Image1和Image2标识出重叠区域. 算法思想: 若两幅图像存在重叠区域,则进行图像匹配后,会得到一张完整的全景图 ...
- 【opencv学习笔记七】访问图像中的像素与图像亮度对比度调整
今天我们来看一下如何访问图像的像素,以及如何改变图像的亮度与对比度. 在之前我们先来看一下图像矩阵数据的排列方式.我们以一个简单的矩阵来说明: 对单通道图像排列如下: 对于双通道图像排列如下: 那么对 ...
- (转) OpenCV学习笔记大集锦 与 图像视觉博客资源2之MIT斯坦福CMU
首页 视界智尚 算法技术 每日技术 来打我呀 注册 OpenCV学习笔记大集锦 整理了我所了解的有关OpenCV的学习笔记.原理分析.使用例程等相关的博文.排序不分先后,随机整理的 ...
- OpenCV学习笔记(4)——图像上的算术运算
学习图像上的算术运算,加法,减法,位运算等 1.图像加法 使用cv2.add()将两幅图像进行加法运算,也可以用numpy运算,直接img+img1.两幅图像的大小和类型必须一致,或者第二个图像可以是 ...
- OpenCV学习笔记:如何扫描图像、利用查找表和计时
目的 我们将探索以下问题的答案: 如何遍历图像中的每一个像素? OpenCV的矩阵值是如何存储的? 如何测试我们所实现算法的性能? 查找表是什么?为什么要用它? 测试用例 这里我们测试的,是一种简单的 ...
- OpenCV学习笔记(七) 图像金字塔 阈值 边界
转自: OpenCV 教程 使用 图像金字塔 进行缩放 图像金字塔是视觉运用中广泛采用的一项技术.一个图像金字塔是一系列图像的集合 - 所有图像来源于同一张原始图像 - 通过梯次向下采样获得,直到达到 ...
- OpenCV 学习笔记(13)图像转换成视频
关键 1参数里的分辨率是图像本身的分辨率,而不是指定生成的视频分辨率.如果要修改分辨率,要么后期软件处理,要么读图的时候resize 2要正常退出,不要强制退出. 3生成的只能是avi格式. #inc ...
- opencv::将两幅图像合并后,在同一个窗口显示;并将合并的图像流保存成视频文件
/** * @file main-opencv.cpp * @date July 2014 * @brief An exemplative main file for the use of ViBe ...
- CV 两幅图像配准
http://www.cnblogs.com/Lemon-Li/p/3504717.html 图像配准算法一般可分为: 一.基于图像灰度统计特性配准算法:二.基于图像特征配准算法:三.基于图像理解的配 ...
随机推荐
- vue截取字符串
1.vue中截取前11位字符串 <li> <span>立案时间:</span> <p>{{jsyd.TIME.substring(0,10)}}< ...
- mosquitto: error while loading shared libraries: libwebsockets.so.12: cannot open shared object file
错误描述: # mosquitto -c /etc/mosquitto/mosquitto.conf -dmosquitto: error while loading shared libraries ...
- 【LeetCode】387. First Unique Character in a String
Difficulty:easy More:[目录]LeetCode Java实现 Description https://leetcode.com/problems/first-unique-cha ...
- Java开发月薪2W的知乎讨论记录截取
1. 推荐看 作者:匿名用户 链接:https://www.zhihu.com/question/39890405/answer/83676977 来源:知乎 著作权归作者所有.商业转载请联系作者获得 ...
- C# vb .net图像合成-合成自定义路径
在.net中,如何简单快捷地实现图像合成呢,比如合成文字,合成艺术字,多张图片叠加合成等等?答案是调用SharpImage!专业图像特效滤镜和合成类库.下面开始演示关键代码,您也可以在文末下载全部源码 ...
- psexec与wmi在内网渗透的使用
psexec是一个很好的管理工具,在内网渗透中也被广泛使用. 但太“出名”也往往会遭来各种麻烦. 在有安全监听.防护的内网中使用psexec会容易触发告警. 1.psexec用法(前提:对方要开启ad ...
- 为什么会有jQuery、Dojo、Ext、Prototype、YUI、Zepto这么多JS包?
目前流行的JS框架很多Dojo .Scriptaculous .Prototype .yui-ext .Jquery .Mochikit.mootools .moo.fx 等.当然还有很多我都不熟悉的 ...
- jvm学习笔记之class文件的加载、初始化
编写的java文件在要真正运行时,会首先被编译成 “.class"结尾的二进制文件,然后被虚拟机加载.那么在虚拟机中一个class文件要成为java实例,需要经历好几个步骤: 1.装载:装载 ...
- Python实现的贪婪算法
个州的听众都收听到.为此,你需要决定在哪些广播台播出.在每个广播台播出都需要支出费用,因此你力图在尽可能少的广播台播出 # 1.创建一个列表,其中包含要覆盖的州 states_needed = set ...
- day 33
目录 数据库是什么 为什么使用数据库 数据库的分类 关系型(把数据保存在硬盘里) 非关系型(把数据保存在内存里) mysql的架构 初识mysql 操作数据库 增 删 改 查 数据库是什么 数据库即存 ...