Numpy | 04 数组属性
NumPy 数组的维数称为秩(rank),一维数组的秩为 1,二维数组的秩为 2,以此类推。
在 NumPy中,每一个线性的数组称为是一个轴(axis),也就是维度(dimensions)。比如说,二维数组相当于是两个一维数组,其中第一个一维数组中每个元素又是一个一维数组。所以一维数组就是 NumPy 中的轴(axis),第一个轴相当于是底层数组,第二个轴是底层数组里的数组。而轴的数量——秩,就是数组的维数。
很多时候可以声明 axis。axis=0,表示沿着第 0 轴进行操作,即对每一列进行操作;axis=1,表示沿着第1轴进行操作,即对每一行进行操作。
NumPy 的数组中比较重要 ndarray 对象属性有:
属性 | 说明 |
---|---|
ndarray.ndim | 秩,即轴的数量或维度的数量 |
ndarray.shape | 数组的维度,对于矩阵,n 行 m 列 |
ndarray.size | 数组元素的总个数,相当于 .shape 中 n*m 的值 |
ndarray.dtype | ndarray 对象的元素类型 |
ndarray.itemsize | ndarray 对象中每个元素的大小,以字节为单位 |
ndarray.flags | ndarray 对象的内存信息 |
ndarray.real | ndarray元素的实部 |
ndarray.imag | ndarray 元素的虚部 |
ndarray.data | 包含实际数组元素的缓冲区,由于一般通过数组的索引获取元素,所以通常不需要使用这个属性。 |
ndarray.ndim
ndarray.ndim 用于返回数组的维数,等于秩。
import numpy as np a = np.arange(24)
b = a.reshape(2, 4, 3)print(a.ndim,b.ndim)
输出结果为:
1 3
ndarray.shape
ndarray.shape 表示数组的维度,返回一个元组,这个元组的长度就是维度的数目,即 ndim 属性(秩)。比如,一个二维数组,其维度表示"行数"和"列数"。
import numpy as np a = np.array([[1,2,3],[4,5,6]])
print (a.shape)
输出结果为:
(2, 3)
ndarray.shape 也可以用于调整数组大小
import numpy as np a = np.array([[1,2,3],[4,5,6]])
a.shape = (3,2)
print (a)
输出结果为:
[[1 2]
[3 4]
[5 6]]
NumPy 也提供了 reshape 函数来调整数组大小
import numpy as np a = np.array([[1,2,3],[4,5,6]])
b = a.reshape(3,2)
print (b)
输出结果为:
[[1, 2]
[3, 4]
[5, 6]]
ndarray.itemsize
ndarray.itemsize 以字节的形式返回数组中每一个元素的大小。
例如,一个元素类型为 float64 的数组 itemsiz 属性值为 8(float64 占用 64 个 bits,每个字节长度为 8,所以 64/8,占用 8 个字节);一个元素类型为 complex32 的数组 item 属性为 4(32/8)。
import numpy as np # 数组的 dtype 为 int8(一个字节)
x = np.array([1,2,3,4,5], dtype = np.int8)
print (x.itemsize) # 数组的 dtype 现在为 float64(八个字节)
y = np.array([1,2,3,4,5], dtype = np.float64)
print (y.itemsize)
输出结果为:
1
8
ndarray.flags
ndarray.flags 返回 ndarray 对象的内存信息,包含以下属性:
属性 | 描述 |
---|---|
C_CONTIGUOUS (C) | 数据是在一个单一的C风格的连续段中 |
F_CONTIGUOUS (F) | 数据是在一个单一的Fortran风格的连续段中 |
OWNDATA (O) | 数组拥有它所使用的内存或从另一个对象中借用它 |
WRITEABLE (W) | 数据区域可以被写入,将该值设置为 False,则数据为只读 |
ALIGNED (A) | 数据和所有元素都适当地对齐到硬件上 |
UPDATEIFCOPY (U) | 这个数组是其它数组的一个副本,当这个数组被释放时,原数组的内容将被更新 |
import numpy as np x = np.array([1,2,3,4,5])
print (x.flags)
输出结果为:
C_CONTIGUOUS : True
F_CONTIGUOUS : True
OWNDATA : True
WRITEABLE : True
ALIGNED : True
WRITEBACKIFCOPY : False
UPDATEIFCOPY : False
Numpy | 04 数组属性的更多相关文章
- numpy之数组属性与方法
# coding=utf-8import numpy as npimport random # nan是一个float类型 ,not a num不是一个数字;inf,infinite 无穷 # 轴的概 ...
- numpy库数组属性查看:类型、尺寸、形状、维度
import numpy as np q = np.array([1,2,3,4],dtype=np.complex128) print("数据类型",type(q)) ...
- Numpy 数组属性
Numpy 数组的维数称为秩(rank),一维数组的秩为 1 , 二维数组的秩为 2 , 以此类推:在Numpy中, 每一个线性的数组称为是一个轴(axis),也就是维度(dimensios).比如说 ...
- numpy数组属性查看及断言
numpy数组属性查看:类型.尺寸.形状.维度 import numpy as np a1 = np.array([1,2,3,4],dtype=np.complex128) print(a1) ...
- NumPy数组属性
NumPy - 数组属性 这一章中,我们会讨论 NumPy 的多种数组属性. ndarray.shape 这一数组属性返回一个包含数组维度的元组,它也可以用于调整数组大小. 示例 1 import n ...
- 3.NumPy - 数组属性
1.ndarray.shape 这一数组属性返回一个包含数组维度的元组,它也可以用于调整数组大小 # -*- coding: utf-8 -*- import numpy as np a = np.a ...
- 3、NumPy 数组属性
1.秩.维度 NumPy 数组的维数称为秩(rank),一维数组的秩为 1,二维数组的秩为 2,以此类推. 在 NumPy中,每一个线性的数组称为是一个轴(axis),也就是维度(dimensions ...
- Lesson4——NumPy 数组属性
NumPy 教程目录 NumPy 数组的维数称为秩(rank),秩就是轴的数量,即数组的维度,一维数组的秩为 1,二维数组的秩为 2,以此类推. 在 NumPy中,每一个线性的数组称为是一个轴(axi ...
- python numpy基础 数组和矢量计算
在python 中有时候我们用数组操作数据可以极大的提升数据的处理效率, 类似于R的向量化操作,是的数据的操作趋于简单化,在python 中是使用numpy模块可以进行数组和矢量计算. 下面来看下简单 ...
随机推荐
- 【mysql】新增列 时间戳
参考地址:https://www.cnblogs.com/SZxiaochun/p/9299392.html ALTER TABLE worksheet_data_12 ), ADD COLUMN ` ...
- java基本数据类型的变量
一.整型变量 短整型(short).整型(int)和长整型(long),它们都可以定义整型变量,但是由于分配的内存空间不同,所能表示的数据的长度也不同. 我们可以定义并初始化一个整型变量: int a ...
- c#结束练习题
1.输入一个秒数,输出对应的小时.分钟.秒. 例:输入“4000“(秒),输出“1小时6分40秒”. 2.计算1-1/2+1/3-1/4+...-1/100的值. 3.写一个函数,对一个一维数组排序. ...
- Linux环境下:vmware安装Windows报错误-无人参与应答文件包含的产品密钥无效
最近在安装window server 2012 R2的时候,输入好密钥可以继续安装,但在后面又提示我“无人参与应答文件包含的产品密钥无效.删除无效的密钥或在无人参与应答文件中提供有效的产品密钥继续进行 ...
- Java自学-类和对象 单例模式
Java的饿汉式与懒汉式单例模式 LOL里有一个怪叫大龙GiantDragon,只有一只,所以该类,只能被实例化一次 步骤 1 : 单例模式 单例模式又叫做 Singleton模式,指的是一个类,在一 ...
- 网络编程之基于UDP协议的套接字编程、基于socketserver实现并发的socket
目录 基于UDP协议的套接字编程 UDP套接字简单示例 服务端 客户端 基于socketserver实现并发的socket 基于TCP协议 server类 request类 继承关系 服务端 客户端1 ...
- Tomcat配置https加密连接
配置https安全连接(ssl加密连接) https连接需要用到数字证书与数字签名(MD5算法),网站https连接首先需要申请数字证书,配置加密连接器,浏览器安装证书. 证书运用到RSA技术,RSA ...
- 8 Traits of an Experienced Programmer that every beginner programmer should know
Referrence: http://whats-online.info/guides-and-info/36/Traits-of-Experienced-Programmer-that-every- ...
- Python3 import tensorflow 出现FutureWarning: Passing (type, 1) or '1type' 问题
解决python调用TensorFlow时出现FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecate ...
- java项目路径总结,java.io.File支持的路放方式
1.直接输入路径 已maven项目为例,直接输入路径的4种方式,即是File类支持的方式: /** * FileOutpurStream以字节数组方式写入文件 * @throws IOExceptio ...