题目

做了一下这道题,突然发现自己忘了差分约束,赶紧复习一下。

设当前有n个变量 a1,a2,...,an ,有若干组限制形如 ai≤aj+k (其中k为常数),则由点j向点i连一条边权为k的边,再从某一确定的变量出发跑最短路(如若a1=0,则设dis1=0,从点1出发跑最短路),得到的disi即为ai的最大值。类似的,若把上面的小于等于改成大于等于,跑最长路,就可以得到每个点的最小值。若跑最短路时出现了负环(最长路正环),则说明无解。

代码:

     #include<bits/stdc++.h>
using namespace std;
#define N 200007
int h1[N],pre[N],to[N],num,dis[N],h2[N],h3[N],w[N],f[N],n,m;
int id[N],ans[N];
bool tag1[N],tag2[N],tag[N],vis[N];
queue<int> q;
void add1(int x,int y,int z)
{
num++;pre[num]=h1[x];h1[x]=num;to[num]=y;id[num]=z;
}
void add2(int x,int y)
{
num++;pre[num]=h2[x];h2[x]=num;to[num]=y;
}
void add3(int x,int y,int z)
{
num++;pre[num]=h3[x];h3[x]=num;to[num]=y;w[num]=z;
}
bool spfa(int s)
{
int v,i,u;
memset(dis,0x3f,sizeof(dis));
memset(vis,,sizeof(vis));
dis[s]=;f[s]=;
q.push(s);
while(!q.empty())
{
v=q.front();q.pop();
vis[v]=false;
for(i=h3[v];i;i=pre[i])
{
u=to[i];
if(dis[v]+w[i]<dis[u])
{
dis[u]=dis[v]+w[i];
f[u]=f[v]+;
if(f[u]>=n+)return false;
if(!vis[u])
{
q.push(u);
vis[u]=true;
}
}
}
}
return true;
}
void dfs1(int v)
{
int i,u;
tag1[v]=true;
for(i=h1[v];i;i=pre[i])
{
u=to[i];
if(tag1[u])continue;
dfs1(u);
}
}
void dfs2(int v)
{
int i,u;
tag2[v]=true;
for(i=h2[v];i;i=pre[i])
{
u=to[i];
if(tag2[u])continue;
dfs2(u);
}
}
int main()
{
int i,x,y,j,u,v;
scanf("%d%d",&n,&m);
for(i=;i<=m;i++)
{
scanf("%d%d",&x,&y);
add1(x,y,i),add2(y,x);
}
dfs1(),dfs2(n);
for(i=;i<=n;i++)
if(tag1[i]&&tag2[i])
tag[i]=true;
for(v=;v<=n;v++)
for(i=h1[v];i;i=pre[i])
{
u=to[i];
if(tag[v]&&tag[u])
{
add3(v,u,-);
add3(u,v,);
}
}
if(!spfa(n))printf("No\n");
else
{
printf("Yes\n");
for(v=;v<=n;v++)
for(i=h1[v];i;i=pre[i])
{
u=to[i];
if(tag[u]&&tag[v])ans[id[i]]=dis[v]-dis[u];
else ans[id[i]]=;
}
for(i=;i<=m;i++)
printf("%d\n",ans[i]);
}
return ;
}

CF241E Flights 题解的更多相关文章

  1. [CF241E]Flights

    [CF241E]Flights 题目大意: 给一张\(n(n\le1000)\)个点\(m(m\le5000)\)条边的DAG,确定每条边的边权\(w_i(w_i\in\{1,2\})\),使得所有从 ...

  2. 题解 CF241E Flights

    题目传送门 题目大意 给出一个 \(n\) 个点 \(m\) 条边的 \(\texttt{DAG}\) ,给每条边设定边权为 \(1\) 或者 \(2\) ,使得 \(1\to n\) 的每条路径长度 ...

  3. CodeForces - 241E Flights 题解

    题目大意: 有一个有向无环图,n个点m条边,所有边权为1或2,求一组使所有从1到n的路径长度相同的边权的方案. 思路: 设从1到i的最短路为dist[i],若有一条从x到y的边,则1<=dist ...

  4. CF241E Flights 差分约束

    传送门 差分约束永远是Itst最烂的图论知识点没有之一qwq 先用dfs把在\(1\)到\(N\)的路径上的所有点都拿出来,其他的点和边状态任意都不会影响答案. 然后考虑设\(dis_i\)表示从\( ...

  5. 【CF241E】Flights(差分约束)

    [CF241E]Flights(差分约束) 题面 CF 有\(n\)个点\(m\)条边,要求给每条边赋一个\(1\)或\(2\)的边权,判断能否使得每一条\(1\)到\(n\)的路径的权值和都相等,如 ...

  6. 【CF241E】Flights

    [CF241E]Flights 题面 洛谷 题解 对于原来的图,如果一条边不出现在\(1\)到\(n\)的路径上面,直接\(ban\)掉即可. 那么考虑一条边\(u\rightarrow v\),一定 ...

  7. 「CF241E」Flights

    传送门 Luogu 解题思路 首先对于所有不属于任何一条路径上的边,它的权值是任意的. 对于所有在路径上的边 \((u,v)\) 满足 \(1\le dis_v-dis_u\le2\) 差分约束即可. ...

  8. 题解 CF576D 【Flights for Regular Customers】

    对每条边来说,可以走这条边的限制解除是按\(d\)的顺序,所以先对每条边按\(d\)排序. 然后考虑每两条边之间的处理,用一个矩阵表示当前走\(d\)步是否可以从一个点到另一个点,称其为状态矩阵,用另 ...

  9. Codeforces Round #384 (Div. 2) A. Vladik and flights 水题

    A. Vladik and flights 题目链接 http://codeforces.com/contest/743/problem/A 题面 Vladik is a competitive pr ...

随机推荐

  1. 封装:WPF基于MediaElement封装的视频播放器

    原文:封装:WPF基于MediaElement封装的视频播放器 一.目的:应用MediaElement创建媒体播放器 二.效果图 三.目前支持功能 播放.暂停.停止.快进.快退.声音大小.添加播放列表 ...

  2. c#使用SoundPlayer播放wav格式音频

    1.引用System.Media名称空间下的类SoundPlayer   SoundPlayer player = new SoundPlayer(); 2.方法调用Play(); public vo ...

  3. C# 转成金额每三位逗号隔开

    long aaaa = 14200666; Console.WriteLine(aaaa.ToString("N0")); Console.WriteLine(string.For ...

  4. flyway.setBaselineOnMigrate(true);

    org.springframework.beans.factory.BeanCreationException: Error creating bean with name 'flywayWrappe ...

  5. os.mkdir()与 shutil.rmtree()对文件夹的 创建与删除

    import osimport shutil # os.mkdir('C:/Users/Desktop/123') # 表示在桌面上创建文件# os.mkdir('123') # 表示在此代码文件下创 ...

  6. IntelliJ IDEA重命名变量的问题

    当我尝试使用Shift+ F6或简单地使用Refactor => Rename重命名变量时,有时intellij不仅重命名我想要的那个,而且还重命名具有相同名称的所有其他变量(在其他文件中)以及 ...

  7. 【转载】Asp.Net生成图片验证码工具类

    在Asp.Net应用程序中,很多时候登陆页面以及其他安全重要操作的页面需要输入验证码,本文提供一个生成验证码图片的工具类,该工具类通过随机数生成验证码文本后,再通过C#中的图片处理类位图类,字体类,一 ...

  8. iOS 视图调用

    init-初始化程序 viewDidLoad-加载视图 viewWillAppear-UIViewController对象的视图即将加入窗口时调用: viewDidApper-UIViewContro ...

  9. linq自定义条件Lambda过滤方法

    Public Func<NoramalClass,bool>simpleComare<NormalClass>(string property,object value) { ...

  10. Kafka Streams开发入门(4)

    背景 上一篇演示了filter操作算子的用法.今天展示一下如何根据不同的条件谓词(Predicate)将一个消息流实时地进行分流,划分成多个新的消息流,即所谓的流split.有的时候我们想要对消息流中 ...