图中长度为k的路径的计数
题意
给出一个有向图,其中每条边的边长都为1。求这个图中长度恰为 $k$ 的路劲的总数。($1 \leq n \leq 100, 1 \leq k\leq 10^9$)
分析
首先,$k=1$ 时答案就等于边数。
当 $k=2$,$G_2[i][j] = \sum_{w=1}^nG_1[i][w] \times G_1[w][j]$,相当于选取一个中间节点 $w$,只要存在合适的 $w$ ,$u,v$ 之间就存在通路。
以此类推,$G_k = G^k$ 表示恰好走 $k$ 步的情况,只需统计其中非零元素的个数。
这个算法的复杂度为 $O(n^3logn)$.
如果是求 $k$ 步之内的路径数,只需将每种情况累加,即 $S = A+A^2+...+A^k$,这个复杂度也能做到 $O(n^3 log n)$.
#include<cstdio>
#include<cstring>
using namespace std; typedef long long ll;
struct matrix
{
int r, c;
int mat[][];
matrix(){
memset(mat, , sizeof(mat));
}
};
int n, m, k; matrix mul(matrix A, matrix B) //矩阵相乘
{
matrix ret;
ret.r = A.r; ret.c = B.c;
for(int i = ;i < A.r;i++)
for(int k = ;k < A.c;k++)
for(int j = ;j < B.c;j++)
{
ret.mat[i][j] = (ret.mat[i][j] + A.mat[i][k] * B.mat[k][j]) > ? : ; //只要区分0和非0即可
}
return ret;
} matrix mpow(matrix A, int n)
{
matrix ret;
ret.r = A.r; ret.c = A.c;
for(int i = ;i < ret.r;i++) ret.mat[i][i] = ;
while(n)
{
if(n & ) ret = mul(ret, A);
A = mul(A, A);
n >>= ;
}
return ret;
} int main()
{
scanf("%d%d%d", &n, &m, &k);
matrix A;
A.r = A.c = n;
for(int i = ;i < m;i++)
{
int u, v;
scanf("%d%d", &u, &v);
A.mat[u-][v-] = ;
}
A = mpow(A, k);
int ans = ;
for(int i = ;i < n;i++)
for(int j = ;j < n;j++) ans += A.mat[i][j];
printf("%d\n", ans); return ;
}
图中长度为k的路径的计数的更多相关文章
- 【矩阵乘法】图中长度为k的路径的计数
样例输入 4 2 0 1 1 0 0 0 1 0 0 0 0 1 1 0 0 0 样例输出 6 #include<cstdio> #include<vector> using ...
- 树形DP 统计树中长度为K的路径数量——Distance in Tree
一.问题描述 给出一棵n个节点的树,统计树中长度为k的路径的条数(1<=n<=50000 , 1<=k<=500). 二.解题思路 设d[i][k]表示以i为根节点长度为k的路 ...
- JavaScript 查找图中连接两点的所有路径算法
1.把图看成以起点为根节点的树 2.使用深度遍历算法遍历路径 3.遍历到节点为目标节点时,保存这条路径 find2PointsPath(sourceId, targetId) { const { no ...
- 判断无向图两点间是否存在长度为K的路径
#include <iostream> #include <vector> #define MAXN 5 using namespace std; struct edge { ...
- 【题解】长度为素数的路径个数-C++
Description 对于正整数n (3≤n<20),可以画出n阶的回形矩阵.下面画出的分别是3阶的,4阶的和7阶的回形矩阵: 对于n阶回形矩阵,从左上角出发,每步可以向右或向下走一格,走2* ...
- 【LeetCode】1461. 检查一个字符串是否包含所有长度为 K 的二进制子串 Check If a String Contains All Binary Codes of Size K
作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 统计长度为 K 的子串个数 日期 题目地址:https ...
- 基于邻接表的长度为k的简单路径的求解
描述 一个连通图采用邻接表作为存储结构.设计一个算法,判断无向图中任意给定的两点是否存在一条长度为k的简单路径. 输入 多组数据,每组m+3数据行.第一行有两个数字n,m和k,代表有n个顶点,m条边和 ...
- CSU 1660 K-Cycle(dfs判断无向图中是否存在长度为K的环)
题意:给你一个无向图,判断是否存在长度为K的环. 思路:dfs遍历以每一个点为起点是否存在长度为k的环.dfs(now,last,step)中的now表示当前点,last表示上一个访问的 点,step ...
- 单调队列(数列中长度不超过k的子序列和的最值)
★实验任务 小 F 很爱打怪,今天因为系统 bug,他提前得知了 n 只怪的出现顺序以及击 倒每只怪得到的成就值 ai.设第一只怪出现的时间为第 1 秒,这个游戏每过 1 秒 钟出现一只新怪且没被击倒 ...
随机推荐
- [HAOI2015]树上操作 题解
题目描述 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个操作,分为三种: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子树中所有点的点权都增 ...
- 【翻译】在GitHub上通过星级评估排名前10的最受欢迎的开源Delphi项目
GitHub上有相当多的Delphi开源项目可以为你节省一些时间.我在GitHub上搜索了Delphi,然后按最主要的项目进行排序,并列出了前十名单.这里有一些非常好的东西,包括Awesome Del ...
- Vue框架初识01
摘要 vue简介 vue使用 一.Vue简介: 简介: Vue.js(读音 /vjuː/, 类似于 view)是一个构建数据驱动的 web 界面的渐进式框架.Vue.js 的目标是通过尽可能简单的 A ...
- 01-打印Hello World、变量
一.打印Hello World 下面就是我们写的打印hello world程序 在go语言中://代表单行注释,/**/代表多行注释 //单行注释 /* 多行注释 多行注释 */ package ma ...
- linux安装go开发环境
1下载go wget https://studygolang.com/dl/golang/go1.12.7.linux-amd64.tar.gz执行此命令会将go1.12.7.linux-amd64. ...
- centos7 设置静态ip , 并开机联网
修改 /etc/sysconfig/network-scripts 下的文件 我的是ens32 (不同系统这个文件名字不一样) 内容如下 TYPE=Ethernet PROXY_METHOD=none ...
- HTML5单页框架View.js介绍
什么是单页应用单页应用,是指将用户视觉上的多个页面在技术上使用一个载体来实现的应用. 换句话来讲,用户视觉效果,与技术实现的载体,并不是一定要一一对应的.采取哪种技术方案,取决于产品设计.技术组成以及 ...
- 后台传带引号(")的数据需要注意
后台返回给前端的json字符串 [{"\"Name\":\"<span style=\\\"color: red\\\">&qu ...
- js计算结果不精确问题解决--math.js的使用
最近在做订单相关的一个功能,涉及到金额的计算,有人建议,将计算全部抛给后端来做吧,前端就不需要再维护一套算法了,话说的在理,但是呢,想想用户体验,单价*数量=金额,当用户改变一个数量时,用户都口算出来 ...
- HTML知识整理
以下是自己对以前所学的部分HTML相关知识进行的简单的梳理,水平有限,若有问题的地方,还请见谅. 1. 常用的浏览器及浏览器内核分别是什么? IE:Trident 内核 Firefox:gecko 内 ...