传送门


发现只有通项公式可以解决考虑通项公式

\(F_n = \frac{1}{\sqrt{5}}((\frac{1+\sqrt{5}}{2})^n - (\frac{1-\sqrt{5}}{2})^n) = a\)

注意到根据二次互反律,在\(\mod 10^9+9\)意义下\(5\)存在二次剩余,所以先把\(\sqrt{5}\)对应的值算出来(实际上是\(383001016\))。

那么原式变为了\((\frac{1+\sqrt{5}}{2})^n - (\frac{1-\sqrt{5}}{2})^n = \sqrt{5}a\),\(x^n-y^n=a\)的方程好像还是不会解TAT

观察上面式子可以发现:\(\frac{1-\sqrt{5}}{2} = -\frac{1}{\frac{1 + \sqrt{5}}{2}}\),所以设\(\frac{1 + \sqrt{5}}{2} = x\),那么原式变为\(x - \frac{(-1)^n}{x} = \sqrt{5}a\)。

按照\(n\)的奇偶性讨论,可以得到一个一元二次方程,使用求根公式求出方程的解。注意到在求根公式中还有一个求\(\sqrt{\Delta}\)的操作,这里还需要计算一次二次剩余,如果这里二次剩余无解,那么方程就是无解的,否则就存在两个解。

然后我们最后的问题就是解出\((\frac{1 + \sqrt{5}}{2})^n = t\)的最小的\(n\),同时需要满足\(n\)是奇数或者是偶数。这里我们同样使用BSGS,只需要在分块的时候把块大小分成偶数,然后对于奇数和偶数分开考虑就可以了。

#include<bits/stdc++.h>
#include<tr1/unordered_map>
using namespace std;
using namespace std::tr1; const int MOD = 1e9 + 9;
int val , g , sqrt5 , inv2; int poww(long long a , int b){
int times = 1;
while(b){
if(b & 1) times = times * a % MOD;
a = a * a % MOD; b >>= 1;
}
return times;
} struct BSGS{
unordered_map < int , int > odd , even , all;
int T , powbs; void init(int base){
T = sqrt(MOD) + 1; if(T & 1) ++T;
powbs = poww(base , T);
int tms = 1;
for(int i = 0 ; i < T ; ++i , tms = 1ll * tms * base % MOD){
unordered_map < int , int > &now = i & 1 ? odd : even;
now[tms] = i; all[tms] = i;
}
} int calc(int ans , int val){
unordered_map < int , int > &now = val == 0 ? all : (val == 1 ? odd : even);
int tms = 1ll * powbs * poww(ans , MOD - 2) % MOD;
for(int i = 1 ; i <= T ; ++i , tms = 1ll * tms * powbs % MOD)
if(now.find(tms) != now.end())
return i * T - now[tms];
return 2e9 + 1;
}
}A , B; int findrt(){
int t = MOD - 1; vector < int > zys;
for(int i = 2 ; i * i <= t ; ++i)
if(t % i == 0){
zys.push_back(MOD / i);
while(t % i == 0) t /= i;
}
if(t - 1) zys.push_back(MOD / t);
for(int i = 2 ; ; ++i){
bool flg = 1;
for(int j = 0 ; j < zys.size() && flg ; ++j)
if(poww(i , zys[j]) == 1) flg = 0;
if(flg) return i;
}
} int main(){
cin >> val; g = findrt(); A.init(g); sqrt5 = poww(g , A.calc(5 , 0) / 2);
val = 1ll * val * sqrt5 % MOD; inv2 = poww(2 , MOD - 2);
B.init((1ll + sqrt5) * inv2 % MOD); int t = A.calc((1ll * val * val + MOD - 4) % MOD , 0) , ans = 2e9 + 1;
if(t % 2 == 0){
int sqt = poww(g , t / 2) , ans1 = 1ll * (val + sqt) * inv2 % MOD , ans2 = 1ll * (val - sqt + MOD) * inv2 % MOD;
ans = min(B.calc(ans1 , 1) , B.calc(ans2 , 1));
} t = A.calc((1ll * val * val + 4) % MOD , 0);
if(t % 2 == 0){
int sqt = poww(g , t / 2) , ans1 = 1ll * (val + sqt) * inv2 % MOD , ans2 = 1ll * (val - sqt + MOD) * inv2 % MOD;
ans = min(ans , min(B.calc(ans1 , 2) , B.calc(ans2 , 2)));
} if(ans == 2e9 + 1) puts("-1");
else cout << ans;
return 0;
}

BZOJ5104 Fib数列 二次剩余、BSGS的更多相关文章

  1. bzoj5104 Fib数列(BSGS+二次剩余)

    快AFO了才第一次写二次剩余的题…… 显然应该将Fn写成通项公式(具体是什么写起来不方便而且大家也都知道),设t=((1+√5)/2)n,T=√5N,然后可以得到t-(-1)t/t=√5N,两边同时乘 ...

  2. 【BZOJ5104】Fib数列(BSGS,二次剩余)

    [BZOJ5104]Fib数列(BSGS,二次剩余) 题面 BZOJ 题解 首先求出斐波那契数列的通项: 令\(A=\frac{1+\sqrt 5}{2},B=\frac{1-\sqrt 5}{2}\ ...

  3. bzoj5104: Fib数列

    Description Fib数列为1,1,2,3,5,8... 求在Mod10^9+9的意义下,数字N在Fib数列中出现在哪个位置 无解输出-1 Input 一行,一个数字N,N < = 10 ...

  4. BZOJ5104 Fib数列(二次剩余+BSGS)

    5在1e9+9下有二次剩余,那么fib的通项公式就有用了. 已知Fn,求n.注意到[(1+√5)/2]·[(1-√5)/2]=-1,于是换元,设t=[(1+√5)/2]n,原式变为√5·Fn=t-(- ...

  5. @bzoj - 5104@ Fib数列

    目录 @description@ @solution@ @accepted code@ @details@ @description@ Fib数列为1,1,2,3,5,8... 求在Mod10^9+9 ...

  6. FIB数列

    斐波那契级数除以N会出现循环,此周期称为皮萨诺周期. 下面给出证明 必然会出现循环 这是基于下面事实: 1. R(n+2)=F(n+2) mod P=(F(n+1)+F(n)) mod P=(F(n+ ...

  7. 动态规划之Fib数列类问题应用

    一,问题描述 有个小孩上楼梯,共有N阶楼梯,小孩一次可以上1阶,2阶或者3阶.走到N阶楼梯,一共有多少种走法? 二,问题分析 DP之自顶向下分析方式: 爬到第N阶楼梯,一共只有三种情况(全划分,加法原 ...

  8. UVaLive 3357 Pinary (Fib数列+递归)

    题意:求第 k 个不含前导 0 和连续 1 的二进制串. 析:1,10,100,101,1000,...很容易发现长度为 i 的二进制串的个数正好就是Fib数列的第 i 个数,因为第 i 个也有子问题 ...

  9. 【bzoj5118】Fib数列2 费马小定理+矩阵乘法

    题目描述 Fib定义为Fib(0)=0,Fib(1)=1,对于n≥2,Fib(n)=Fib(n-1)+Fib(n-2) 现给出N,求Fib(2^n). 输入 本题有多组数据.第一行一个整数T,表示数据 ...

随机推荐

  1. Spark在美团的实践

    https://tech.meituan.com/2016/03/31/spark-in-meituan.html 本文已发表在<程序员>杂志2016年4月期. 前言 美团是数据驱动的互联 ...

  2. 转载:理解scala中的Symbol

    相信很多人和我一样,在刚接触Scala时,会觉得Symbol类型很奇怪,既然Scala中字符串都是不可变的,那么Symbol类型到底有什么作用呢? 简单来说,相比较于String类型,Symbol类型 ...

  3. 从浏览器输入url到显示页面的过程 (前端面试题)

    域名DNS解析,解析到真正的IP地址             | 客户端与服务端建立TCP连接,3次握手 | 客户端发送Http请求 | server接收到http请求,处理,并返回 | 客户端接收到 ...

  4. 开机启动类似于Tencent Upd的弹窗解决方法

    1.开机启动的程序,后台启动自动升级的exe,每次开机都弹出弹窗,一不小心就点错了,神烦. 解决方式:直接在windows系统  [ 本地安全策略>软件限制策略>其他规则 ] 里面把弹出的 ...

  5. SSM项目实战 之 Maven

    目录 Maven 简介 Maven是什么 Maven下载安装 Maven使用 Maven规定了一套默认的项目格式 创建第一个Maven项目 Maven仓库 Maven常用命令 Maven作用范围(sc ...

  6. pm升级到最新版本、指定版本

    npm 升级到最新版本 //linux下 npm install -g npm npm升级到指定版本 //比如升级到5.6.0 npm install -g npm@5.6.0

  7. THOR: Tracking Holistic Object Representations

    THOR: Tracking Holistic Object Representations BMVC 2019 Oral 2019-08-04 10:30:09 Paper: https://arx ...

  8. [E2E_L9]类化和级联化

    一.多车辆识别可能和车辆车牌分割: 这样一张图,可以识别多车辆和车牌,问题是如何区分并且配对.  0  1  7  8 是否是车牌可以通过图片的大小进行判断.而配对是前后顺序的. // ------- ...

  9. shell中跳出循环语句break和continue

    在使用while或for循环语句过程中,也许碰到某个特殊条件,我们需要跳过当次循环或整个循环,这是就需要借助break和continue. break表示跳出本层循环,break n表示跳出循环的层数 ...

  10. 123456123456#1#---###3%%%----com.zzj.SuperPuperID668---前拼show后广--嘻哈水管工-111111

    com.zzj.SuperPuperID668---前拼show后广--嘻哈水管工-1111111111111