原题传送门

挺有趣的一道题

\(c=1\),暴力求出点权和n即可

\(c=2\),先像\(c=1\)一样暴力求出点权和n,考虑有多少路径点权和也为n

考虑设x为路径的转折点,\(L\)为\(x\)向左儿子走的长度,\(R\)为\(x\)向右儿子走的长度。易知当\(L,R\)确定时,有唯一的\(x\)对应

以\(x\)为转折点,\(L,R\)为向左/右儿子走的距离,这时点权和至少为\(Min=(2^{L+1}+2^{R+1}-3)x+2^R-1\)

此时x的取值一定珂以求出。考虑一下如何产生剩下\(n-Min\)的贡献,这个贡献一定是原来向左儿子走改成向右儿子走所带来的

我们珂以进行记忆化搜索求出答案,记录\(f[i][j][k]\)表示为向左/右儿子走的距离为\(i,j\)还差贡献为\(k\)的方案数(注意:答案要减去原来已有的那个解)

#include <bits/stdc++.h>
#define ll long long
#define getchar nc
using namespace std;
inline char nc(){
static char buf[100000],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline ll read()
{
register ll x=0,f=1;register char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9')x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return x*f;
}
inline void write(register ll x)
{
if(!x)putchar('0');if(x<0)x=-x,putchar('-');
static int sta[20];register int tot=0;
while(x)sta[tot++]=x%10,x/=10;
while(tot)putchar(sta[--tot]+48);
}
inline int Max(register int x,register int y)
{
return x>y?x:y;
}
inline int dep(register ll n)
{
int res=0;
while(n)
++res,n>>=1;
return res;
}
map<ll,ll> mp[55][55];
inline ll dfs(register int x,register int y,register ll z)
{
if(x<y)
x^=y^=x^=y;
if(z<0||z>(2ll<<x)+(2ll<<y)-x-y-4)
return 0;
if(!x&&!y)
return !z;
if(mp[x][y].count(z))
return mp[x][y][z];
return mp[x][y][z]=dfs(x-1,y,z)+dfs(x-1,y,z-(1ll<<x)+1);
}
int T,d,c;
ll a,b,n,ans;
int main()
{
T=read();
while(T--)
{
n=0;
d=read(),a=read(),b=read(),c=read();
while(a!=b)
{
if(a>b)
n+=a,a>>=1;
else
n+=b,b>>=1;
}
n+=a;
if(c==1)
{
write(n),puts("");
continue;
}
ans=0;
if(dep(n)<=d)
++ans;
for(register int l=1;l<=d;++l)
{
ll k=(2ll<<l)-1;
if(k<=n&&dep(n/k)+l<=d)
ans+=dfs(l,0,n%k);
}
for(register int l=1;l<=d;++l)
for(register int r=1;r<=d;++r)
{
ll k=(2ll<<l)+(2ll<<r)-3,b=(1ll<<r)-1;
if(k+b<=n&&dep((n-b)/k)+Max(l,r)<=d)
ans+=dfs(l-1,r-1,(n-b)%k);
}
write(ans-1),puts("");
}
return 0;
}

【题解】Luogu P5342 [TJOI2019]甲苯先生的线段树的更多相关文章

  1. luogu P5342 [TJOI2019]甲苯先生的线段树

    传送门 你个好好的省选怎么可以出CF原题啊,你们这个题害人不浅啊,这样子出题像极了cxk,说到cxk,我又想起了他是NBA形象大使,跟我是西游文化大使一样一样的,今年下半年... 别说了,jinsai ...

  2. p5342 [TJOI2019]甲苯先生的线段树

    分析  代码 #include<bits/stdc++.h> using namespace std; #define int long long ],yy[],cnt1,cnt2; ][ ...

  3. [TJOI2019] 甲苯先生的线段树

    臭名昭著的巧合:CF750G 题意:在无限深度的一颗线段树中询问编号和为S的简单路径条数. 题解传送门 这道题相当于在原来基础上多了询问两点间简单路径的编号的的问题. 直觉告诉我们只需要求出两点在线段 ...

  4. [LOJ3109][TJOI2019]甲苯先生的线段树:DP

    分析 首先,请允许我 orz HN队长zsy.链接 我们发现树上的链有两种类,一类是直上直下的,一类不是直上直下的(废话).并且,如果我们确定了左侧和右侧的链的长度和整条链上所有节点的编号之和,那么这 ...

  5. 【LOJ】#3109. 「TJOI2019」甲苯先生的线段树

    LOJ#3109. 「TJOI2019」甲苯先生的线段树 发现如果枚举路径两边的长度的话,如果根节点的值是$x$,左边走了$l$,右边走了$r$ 肯定答案会是$(2^{l + 1} + 2^{r + ...

  6. 【题解】P4247 [清华集训]序列操作(线段树修改DP)

    [题解]P4247 [清华集训]序列操作(线段树修改DP) 一道神仙数据结构(DP)题. 题目大意 给定你一个序列,会区间加和区间变相反数,要你支持查询一段区间内任意选择\(c\)个数乘起来的和.对1 ...

  7. 【题解】P4585 [FJOI2015]火星商店问题(线段树套Trie树)

    [题解]P4585 [FJOI2015]火星商店问题(线段树套Trie树) 语文没学好不要写省选题面!!!! 题目大意: 有\(n\)个集合,每个集合有个任意时刻都可用的初始元素.现在有\(m\)个操 ...

  8. 【题解】Luogu P5338 [TJOI2019]甲苯先生的滚榜

    原题传送门 这题明显可以平衡树直接大力整,所以我要说一下线段树+树状数组的做法 实际线段树+树状数组的做法也很暴力 我们先用树状数组维护每个ac数量有多少个队伍.这样就能快速求出有多少队伍ac数比现在 ...

  9. luogu P5338 [TJOI2019]甲苯先生的滚榜

    传送门 首先,排名系统,一看就知道是原题,可以上平衡树来维护 然后考虑一种比较朴素的想法,因为我们要知道排名在一个人前面的人数,也就是AC数比他多的人数+AC数一样并且罚时少的人数,所以考虑维护那两个 ...

随机推荐

  1. connect via ssh to virtualbox guest vm without knowing ip address

    cat ssh-vm HOSTIP=`ip route get 1 | awk '{match($0, /.+src\s([.0-9]+)/, a);print a[1];exit}'` HOST_N ...

  2. 【转】Impala 中的 Invalidate Metadata 和 Refresh

    前言Impala采用了比较奇葩的多个impalad同时提供服务的方式,并且它会由catalogd缓存全部元数据,再通过statestored完成每一次的元数据的更新到impalad节点上,Impala ...

  3. 回滚事件只是让原数据看起来不变,但是id还是会自增吗?

    回滚事件只是让原数据看起来不变,但是id还是会自增对吗? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 ...

  4. xargs 命令教程

    转自阮一峰 http://www.ruanyifeng.com/blog/2019/08/xargs-tutorial.html 仅供个人交流学习 xargs是 Unix 系统的一个很有用的命令,但是 ...

  5. [技术博客] 自制 apt deb Repository

    [技术博客] 自制 apt deb Repository (termux) 在修改整合遵循GPLv3的Android terminal app and Linux environment:termux ...

  6. js - 常用工具集功能函数

    Note [普通JSON数组插入指定位置并且合并] let arr = [{ a: 11 }, { a: 11 }, { a: 11 }, { a: 117 }, { a: 11 }, { a: 11 ...

  7. 破解magento加密的密码算法

    magento遇到丢掉密码的情况,其实很常见……比如我这记性,还好我比较暴力:-P      先看一段代码:           /**  * Hash a string  *  * @param s ...

  8. Python2.7 删除前N天日志文件

    Python2.7 删除前N天日志文件 import os import sys import time day_n = 7 path=os.getcwd().replace("\\&quo ...

  9. 【Python】解析Python中的异常操作

    目录结构: contents structure [-] try,except,else,finally块 异常处理 使用except而不带任何异常类型 使用except而带多种异常类型 try-fi ...

  10. (转)LoadRunner之录制你的第一个脚本

    LoadRunner安装完成之后,肯定就迫不及待的想要上手试用了.下面就是讲一下LR脚本录制的流程和基本的设置. 1.先放一张脚本录制以及运行的流程图 2.脚本录制步骤 1)以管理员身份打开LR软件, ...