原题传送门

挺有趣的一道题

\(c=1\),暴力求出点权和n即可

\(c=2\),先像\(c=1\)一样暴力求出点权和n,考虑有多少路径点权和也为n

考虑设x为路径的转折点,\(L\)为\(x\)向左儿子走的长度,\(R\)为\(x\)向右儿子走的长度。易知当\(L,R\)确定时,有唯一的\(x\)对应

以\(x\)为转折点,\(L,R\)为向左/右儿子走的距离,这时点权和至少为\(Min=(2^{L+1}+2^{R+1}-3)x+2^R-1\)

此时x的取值一定珂以求出。考虑一下如何产生剩下\(n-Min\)的贡献,这个贡献一定是原来向左儿子走改成向右儿子走所带来的

我们珂以进行记忆化搜索求出答案,记录\(f[i][j][k]\)表示为向左/右儿子走的距离为\(i,j\)还差贡献为\(k\)的方案数(注意:答案要减去原来已有的那个解)

#include <bits/stdc++.h>
#define ll long long
#define getchar nc
using namespace std;
inline char nc(){
static char buf[100000],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline ll read()
{
register ll x=0,f=1;register char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9')x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return x*f;
}
inline void write(register ll x)
{
if(!x)putchar('0');if(x<0)x=-x,putchar('-');
static int sta[20];register int tot=0;
while(x)sta[tot++]=x%10,x/=10;
while(tot)putchar(sta[--tot]+48);
}
inline int Max(register int x,register int y)
{
return x>y?x:y;
}
inline int dep(register ll n)
{
int res=0;
while(n)
++res,n>>=1;
return res;
}
map<ll,ll> mp[55][55];
inline ll dfs(register int x,register int y,register ll z)
{
if(x<y)
x^=y^=x^=y;
if(z<0||z>(2ll<<x)+(2ll<<y)-x-y-4)
return 0;
if(!x&&!y)
return !z;
if(mp[x][y].count(z))
return mp[x][y][z];
return mp[x][y][z]=dfs(x-1,y,z)+dfs(x-1,y,z-(1ll<<x)+1);
}
int T,d,c;
ll a,b,n,ans;
int main()
{
T=read();
while(T--)
{
n=0;
d=read(),a=read(),b=read(),c=read();
while(a!=b)
{
if(a>b)
n+=a,a>>=1;
else
n+=b,b>>=1;
}
n+=a;
if(c==1)
{
write(n),puts("");
continue;
}
ans=0;
if(dep(n)<=d)
++ans;
for(register int l=1;l<=d;++l)
{
ll k=(2ll<<l)-1;
if(k<=n&&dep(n/k)+l<=d)
ans+=dfs(l,0,n%k);
}
for(register int l=1;l<=d;++l)
for(register int r=1;r<=d;++r)
{
ll k=(2ll<<l)+(2ll<<r)-3,b=(1ll<<r)-1;
if(k+b<=n&&dep((n-b)/k)+Max(l,r)<=d)
ans+=dfs(l-1,r-1,(n-b)%k);
}
write(ans-1),puts("");
}
return 0;
}

【题解】Luogu P5342 [TJOI2019]甲苯先生的线段树的更多相关文章

  1. luogu P5342 [TJOI2019]甲苯先生的线段树

    传送门 你个好好的省选怎么可以出CF原题啊,你们这个题害人不浅啊,这样子出题像极了cxk,说到cxk,我又想起了他是NBA形象大使,跟我是西游文化大使一样一样的,今年下半年... 别说了,jinsai ...

  2. p5342 [TJOI2019]甲苯先生的线段树

    分析  代码 #include<bits/stdc++.h> using namespace std; #define int long long ],yy[],cnt1,cnt2; ][ ...

  3. [TJOI2019] 甲苯先生的线段树

    臭名昭著的巧合:CF750G 题意:在无限深度的一颗线段树中询问编号和为S的简单路径条数. 题解传送门 这道题相当于在原来基础上多了询问两点间简单路径的编号的的问题. 直觉告诉我们只需要求出两点在线段 ...

  4. [LOJ3109][TJOI2019]甲苯先生的线段树:DP

    分析 首先,请允许我 orz HN队长zsy.链接 我们发现树上的链有两种类,一类是直上直下的,一类不是直上直下的(废话).并且,如果我们确定了左侧和右侧的链的长度和整条链上所有节点的编号之和,那么这 ...

  5. 【LOJ】#3109. 「TJOI2019」甲苯先生的线段树

    LOJ#3109. 「TJOI2019」甲苯先生的线段树 发现如果枚举路径两边的长度的话,如果根节点的值是$x$,左边走了$l$,右边走了$r$ 肯定答案会是$(2^{l + 1} + 2^{r + ...

  6. 【题解】P4247 [清华集训]序列操作(线段树修改DP)

    [题解]P4247 [清华集训]序列操作(线段树修改DP) 一道神仙数据结构(DP)题. 题目大意 给定你一个序列,会区间加和区间变相反数,要你支持查询一段区间内任意选择\(c\)个数乘起来的和.对1 ...

  7. 【题解】P4585 [FJOI2015]火星商店问题(线段树套Trie树)

    [题解]P4585 [FJOI2015]火星商店问题(线段树套Trie树) 语文没学好不要写省选题面!!!! 题目大意: 有\(n\)个集合,每个集合有个任意时刻都可用的初始元素.现在有\(m\)个操 ...

  8. 【题解】Luogu P5338 [TJOI2019]甲苯先生的滚榜

    原题传送门 这题明显可以平衡树直接大力整,所以我要说一下线段树+树状数组的做法 实际线段树+树状数组的做法也很暴力 我们先用树状数组维护每个ac数量有多少个队伍.这样就能快速求出有多少队伍ac数比现在 ...

  9. luogu P5338 [TJOI2019]甲苯先生的滚榜

    传送门 首先,排名系统,一看就知道是原题,可以上平衡树来维护 然后考虑一种比较朴素的想法,因为我们要知道排名在一个人前面的人数,也就是AC数比他多的人数+AC数一样并且罚时少的人数,所以考虑维护那两个 ...

随机推荐

  1. 【JZOJ6214】【20190614】tetris

    题目 这是一道和俄罗斯方块有关的有趣题目 底面宽度为\(N\),高度无限,初始时方块高度为\(A_i\) 你可以决定每次会下落一个\(1 \times K\)或者\(K \times 1\)的方块 你 ...

  2. 编译错误: file not found with angled include use quotes instead #include <lualib.h> 和 #include "lualib.h"

    http://stackoverflow.com/questions/17465902/use-of-external-c-headers-in-objective-c 问题: 7down votef ...

  3. 简单find命令的实现

    贴代码: /*实现一个简单的find命令:*//*程序思路:首先,用一个单链表将所需要的信息存储起来:其次根据所传入的参数信息,改变节点的状态(若有这个状态,证明该节点就是我们所需要的)最后将所需要的 ...

  4. ubuntu下Java通过JNI调用C

    下面看一个实例,如下: public class TestJNI { static { System.loadLibrary("diaoyong"); // 程序在加载时,自动加载 ...

  5. The Snowflake Elastic Data Warehouse

    开篇说的是,Shared-nothing当前已经是主流的架构,需要用自身的local disks来存储数据,Tables被水平划分到各个partitions上 这种架构,比较适合star-schema ...

  6. jdk8 stream实现sql单表select a,b,sum(),avg(),max() from group by a,b order by a,b limit M offset N及其性能

    之所以要测该场景,是因为merge多数据源结果的时候,有时候只是单个子查询结果了,而此时采用sql数据库处理并不一定能够合理(网络延迟太大). 测试数据10万行,结果1000行 limit 20 of ...

  7. lightgbm GPU版本安装

     python机器学习-乳腺癌细胞挖掘(博主亲自录制视频)https://study.163.com/course/introduction.htm?courseId=1005269003&u ...

  8. 闭包(python)

    1.闭包的理解 我们可以将闭包理解为一种特殊的函数,这种函数由两个函数的嵌套组成,且称之为外函数和内函数,外函数返回值是内函数的引用,此时就构成了闭包. 2. 闭包的格式 下面用伪代码进行闭包格式的描 ...

  9. 【小实现】css after+border实现标签半菱形

    <!DOCTYPE html> <html lang="en"> <head> <style> .span-line-begin { ...

  10. 运维笔记--给正在运行的Docker容器动态绑定卷组(挂载指定目录)

    场景描述: 操作系统: ubuntu16.04, docker版本: Docker version 19.03.1 系统运行一段时间后,该服务器上有一个运行中docker容器,需要在容器里边挂载本地服 ...