最近在网上找到了一个使用LSTM 网络解决  世界银行中各国 GDP预测的一个问题,感觉比较实用,毕竟这是找到的唯一一个可以正确运行的程序。

#encoding:UTF-8

import pandas as pd
from pandas_datareader import wb import torch
import torch.nn
import torch.optim #读取数据
countries = ['BR', 'CA', 'CN', 'FR', 'DE', 'IN', 'IL', 'JP', 'SA', 'GB', 'US',]
dat = wb.download(indicator='NY.GDP.PCAP.KD',
country=countries, start=1970, end=2016) df = dat.unstack().T
df.index = df.index.droplevel(0).astype(int)
#print(df) #搭建神经网络
class Net(torch.nn.Module): def __init__(self, input_size, hidden_size):
super(Net, self).__init__()
self.rnn = torch.nn.LSTM(input_size, hidden_size)
self.fc = torch.nn.Linear(hidden_size, 1) def forward(
self, x):
x = x[:, :, None]
x, _ = self.rnn(x)
x = self.fc(x)
x = x[:, :, 0]
return x net = Net(input_size=1, hidden_size=5)
#print(net) #训练神经网络
# 数据归一化
df_scaled = df / df.loc[2000] # 确定训练集和测试集
years = df.index
train_seq_len = sum((years >= 1971) & (years <= 2000))
test_seq_len = sum(years > 2000) print ('训练集长度 = {}, 测试集长度 = {}'.format(
train_seq_len, test_seq_len)) # 确定训练使用的特征和标签
inputs = torch.tensor(df_scaled.iloc[:-1].values, dtype=torch.float32)
labels = torch.tensor(df_scaled.iloc[1:].values, dtype=torch.float32) # 训练网络
criterion = torch.nn.MSELoss()
optimizer = torch.optim.Adam(net.parameters())
for step in range(10001):
if step:
optimizer.zero_grad()
train_loss.backward()
optimizer.step() preds = net(inputs)
train_preds = preds[:train_seq_len]
train_labels = labels[:train_seq_len]
train_loss = criterion(train_preds, train_labels) test_preds = preds[-test_seq_len]
test_labels = labels[-test_seq_len]
test_loss = criterion(test_preds, test_labels) if step % 500 == 0:
print ('第{}次迭代: loss (训练集) = {}, loss (测试集) = {}'.format(
step, train_loss, test_loss)) preds = net(inputs)
df_pred_scaled = pd.DataFrame(preds.detach().numpy(),
index=years[1:], columns=df.columns)
df_pred = df_pred_scaled * df.loc[2000]
df_pred.loc[2001:]

深度学习 循环神经网络 LSTM 示例的更多相关文章

  1. 时间序列深度学习:状态 LSTM 模型预测太阳黑子

    目录 时间序列深度学习:状态 LSTM 模型预测太阳黑子 教程概览 商业应用 长短期记忆(LSTM)模型 太阳黑子数据集 构建 LSTM 模型预测太阳黑子 1 若干相关包 2 数据 3 探索性数据分析 ...

  2. 十 | 门控循环神经网络LSTM与GRU(附python演练)

    欢迎大家关注我们的网站和系列教程:http://panchuang.net/ ,学习更多的机器学习.深度学习的知识! 目录: 门控循环神经网络简介 长短期记忆网络(LSTM) 门控制循环单元(GRU) ...

  3. 循环神经网络LSTM RNN回归:sin曲线预测

    摘要:本篇文章将分享循环神经网络LSTM RNN如何实现回归预测. 本文分享自华为云社区<[Python人工智能] 十四.循环神经网络LSTM RNN回归案例之sin曲线预测 丨[百变AI秀]& ...

  4. Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.1

    3.Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.1 http://blog.csdn.net/sunbow0 ...

  5. Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.2

    3.Spark MLlib Deep Learning Convolution Neural Network(深度学习-卷积神经网络)3.2 http://blog.csdn.net/sunbow0 ...

  6. 针对深度学习(神经网络)的AI框架调研

    针对深度学习(神经网络)的AI框架调研 在我们的AI安全引擎中未来会使用深度学习(神经网络),后续将引入AI芯片,因此重点看了下业界AI芯片厂商和对应芯片的AI框架,包括Intel(MKL CPU). ...

  7. Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.3

    3.Spark MLlib Deep Learning Convolution Neural Network(深度学习-卷积神经网络)3.3 http://blog.csdn.net/sunbow0 ...

  8. 深度学习--RNN,LSTM

    一.RNN 1.定义 递归神经网络(RNN)是两种人工神经网络的总称.一种是时间递归神经网络(recurrent neural network),另一种是结构递归神经网络(recursive neur ...

  9. 【深度学习与神经网络】深度学习的下一个热点——GANs将改变世界

    本文作者 Nikolai Yakovenko 毕业于哥伦比亚大学,目前是 Google 的工程师,致力于构建人工智能系统,专注于语言处理.文本分类.解析与生成. 生成式对抗网络-简称GANs-将成为深 ...

随机推荐

  1. POJ3352Road Construction(构造双连通图)sdut2506完美网络

    构造双连通图:一个有桥的连通图,如何把它通过加边变成边双连通图? 一个有桥的连通图,如何把它通过加边变成边双连通图?方法为首先求出所有的桥,然后删除这些桥边,剩下的每个连通块都是一个双连通子图.把每个 ...

  2. STL学习笔记--算法

    关于STL算法需要注意的是: (1) 所有STL算法被设计用来处理一个或多个迭代器区间.第一个区间通常以起点和终点表示,至于其他区间,多数情况下只需提供起点即可,其终点可自动以第一区间的元素数推导出来 ...

  3. Smarty 函数

    html_checkboxes 自定义函数 html_checkboxes 根据给定的数据创建复选按钮组. 该函数可以指定哪些元素被选定. 要么必须指定 values 和 ouput 属性,要么指定 ...

  4. js中 a : function(){}这是什么格式? 代表什么含义?怎样学习这样的格式?

    js中的json. 一种轻量级数据格式.json中的值是map形式的就是key->value. 具体看下边的示例; var person = { // 用 大括号括声明一个json. " ...

  5. 搭建Mybatis 出现 Error querying database. Cause: java.lang.IllegalArgumentException: Mapped Statements collection does not contain value for mapper.BatchCustomer.findBatchCustomerOneToOne

    Error querying database. Cause: java.lang.IllegalArgumentException: Mapped Statements collection doe ...

  6. Eclipse自动提示

    在java的自动激活触发器里输入:abcdefghijklmnopqrstuvwxyz.

  7. CentOS7搭建Gitlab详细过程

    1.参见Gitlab官网说明 原文地址:https://about.gitlab.com/install/#centos-7   1.安装并配置必要的依赖项 在CentOS 7(和RedHat / O ...

  8. zabbix监控路由器

    在路由器上添加团体名: snmp-server enable traps snmp-server community XXXX rw   1.使用Getif查看路由器端口信息 getif-2.31

  9. 【转】集群/分布式环境下5种session处理策略

    转载至:http://blog.csdn.net/u010028869/article/details/50773174 在搭建完集群环境后,不得不考虑的一个问题就是用户访问产生的session如何处 ...

  10. 将 R 整合到 markdown 中

    markdown 易于写入和读取,具有编写报告的必要功能,例如简单的文本格式,嵌入图片.链接.表.引用.数学公式以及代码块.虽然在 markdown 中编写纯文本很容易,但是创建具有许多图片和表格的报 ...