机器学习算法--svm实战
1、不平衡数据分类问题
对于非平衡级分类超平面,使用不平衡SVC找出最优分类超平面,基本的思想是,我们先找到一个普通的分类超平面,自动进行校正,求出最优的分类超平面
测试代码如下:
import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm
rng = np.random.RandomState(0)
n_samples_1 = 1000
n_samples_2 = 100
X = np.r_[1.5 * rng.randn(n_samples_1, 2),0.5 * rng.randn(n_samples_2, 2) + [2, 2]]
y = [0] * (n_samples_1) + [1] * (n_samples_2)
print X
print y clf = svm.SVC(kernel='linear', C=1.0)
clf.fit(X, y)
w = clf.coef_[0]
a = -w[0] / w[1]
xx = np.linspace(-5, 5)
yy = a * xx - clf.intercept_[0] / w[1]
wclf = svm.SVC(kernel='linear', class_weight={1: 10})
wclf.fit(X, y) ww = wclf.coef_[0]
wa = -ww[0] / ww[1]
wyy = wa * xx - wclf.intercept_[0] / ww[1] h0 = plt.plot(xx, yy, 'k-', label='no weights')
h1 = plt.plot(xx, wyy, 'k--', label='with weights')
plt.scatter(X[:, 0], X[:, 1], c=y)
plt.legend() plt.axis('tight')
plt.show()
运行结果如下:

2、回归问题
import numpy as np
from sklearn.svm import SVR
import matplotlib.pyplot as plt X = np.sort(5 * np.random.rand(40, 1), axis=0)
y = np.sin(X).ravel() y[::5] += 3 * (0.5 - np.random.rand(8)) svr_rbf = SVR(kernel='rbf', C=1e3, gamma=0.1)
svr_lin = SVR(kernel='linear', C=1e3)
svr_poly = SVR(kernel='poly', C=1e3, degree=2)
y_rbf = svr_rbf.fit(X, y).predict(X)
y_lin = svr_lin.fit(X, y).predict(X)
y_poly = svr_poly.fit(X, y).predict(X) lw = 2
plt.scatter(X, y, color='darkorange', label='data')
plt.hold('on')
plt.plot(X, y_rbf, color='navy', lw=lw, label='RBF model')
plt.plot(X, y_lin, color='c', lw=lw, label='Linear model')
plt.plot(X, y_poly, color='cornflowerblue', lw=lw, label='Polynomial model')
plt.xlabel('data')
plt.ylabel('target')
plt.title('Support Vector Regression')
plt.legend()
plt.show()
运行结果如下:

机器学习算法--svm实战的更多相关文章
- 【机器学习算法基础+实战系列】SVM
概述 支持向量机是一种二分类模型,间隔最大使它有别于感知机.支持向量机学习方法由简至繁的模型:线性可分支持向量机(linear support vector machine in linearly s ...
- 数学之路(3)-机器学习(3)-机器学习算法-SVM[7]
SVM是新近出现的强大的数据挖掘工具,它在文本分类.手写文字识别.图像分类.生物序列分析等实际应用中表现出非常好的性能.SVM属于监督学习算法,样本以属性向量的形式提供,所以输入空间是Rn的子集. 图 ...
- 机器学习算法 --- SVM (Support Vector Machine)
一.SVM的简介 SVM(Support Vector Machine,中文名:支持向量机),是一种非常常用的机器学习分类算法,也是在传统机器学习(在以神经网络为主的深度学习出现以前)中一种非常牛X的 ...
- 机器学习 - 算法 - SVM 支持向量机
SVM 原理引入 支持向量机( SVM,Support Vector Machine ) 背景 2012年前较为火热, 但是在12年后被神经网络逼宫, 由于应用场景以及应用算法的不同, SVM还是需要 ...
- 数学之路(3)-机器学习(3)-机器学习算法-SVM[5]
svm小结 1.超平面 两种颜色的点分别代表两个类别,红颜色的线表示一个可行的超平面.在进行分类的时候,我们将数据点 x 代入 f(x) 中,如果得到的结果小于 0 ,则赋予其类别 -1 ,如果 ...
- 数学之路(3)-机器学习(3)-机器学习算法-SVM[9]
我们应用SVM的非线性分类功能对手写数字进行识别,我们在这应用poly做为非线性核 svm = mlpy.LibSvm(svm_type='c_svc', kernel_type='poly',gam ...
- 【机器学习算法基础+实战系列】KNN算法
k 近邻法(K-nearest neighbor)是一种基本的分类方法 基本思路: 给定一个训练数据集,对于新的输入实例,在训练数据集中找到与该实例最邻近的k个实例,这k个实例多数属于某个类别,就把输 ...
- 机器学习 - 算法 - SVM 支持向量机 Py 实现 / 人脸识别案例
SVM 代码实现展示 相关模块引入 %matplotlib inline import numpy as np import matplotlib.pyplot as plt from scipy i ...
- 【机器学习】svm
机器学习算法--SVM 目录 机器学习算法--SVM 1. 背景 2. SVM推导 2.1 几何间隔和函数间隔 2.2 SVM原问题 2.3 SVM对偶问题 2.4 SMO算法 2.4.1 更新公式 ...
随机推荐
- pta习题集5-16 朋友圈
某学校有N个学生,形成M个俱乐部.每个俱乐部里的学生有着一定相似的兴趣爱好,形成一个朋友圈.一个学生可以同时属于若干个不同的俱乐部.根据"我的朋友的朋友也是我的朋友"这个推论可以得 ...
- CentOS中为新用户添加sudo权限
1.切换成root权限 su root 2.查看/etc/sudoers文件权限,如果只读权限,修改为可写权限 ls -l /etc/sudoers 3.如果是只读进行如下操作 chmod /etc/ ...
- hihoCoder_1445_后缀自动机二·重复旋律5
#1445 : 后缀自动机二·重复旋律5 时间限制:10000ms 单点时限:2000ms 内存限制:512MB 描述 小Hi平时的一大兴趣爱好就是演奏钢琴.我们知道一个音乐旋律被表示为一段数构成的数 ...
- Scanline Fill Algorithm
https://www.sccs.swarthmore.edu/users/02/jill/graphics/hw3/hw3.html http://web.cs.ucdavis.edu/~ma/EC ...
- Openstack(十五)快速添加新计算节点
当后期添加新物理服务器作为计算节点,如果按照上面的过程安装配置的话会非常的慢,但是可以通过复制配置文件的方式快速添加. 15.1计算节点服务安装 #提前将yum仓库.防火墙.selinux.主机名.时 ...
- Windows mysql默认字符集修改
一.通过MySQL命令行修改: set character_set_client=utf8; set character_set_connection=utf8; set character_set_ ...
- c primer plus(五版)编程练习-第七章编程练习
1.编写一个程序.该程序读取输入直到遇到#字符,然后报告读取的空格数目.读取的换行符数目以及读取的所有其他字符数目. #include<stdio.h> #include<ctype ...
- (转)帮你深入理解OAuth2.0协议
1. 引言 如果你开车去酒店赴宴,你经常会苦于找不到停车位而耽误很多时间.是否有好办法可以避免这个问题呢?有的,听说有一些豪车的车主就不担心这个问题.豪车一般配备两种钥匙:主钥匙和泊车钥匙.当你到酒店 ...
- rails常用gem
一,开发模式下 1,better_errors 使用全新的页面替换 Rails 默认的错误页面,显示更多的上下文信息,例如源码 和变量的值:配合binding_of_caller可以执行代码查看变量的 ...
- 2016-2017 ACM-ICPC CHINA-Final Solution
Problem A. Number Theory Problem Solved. 水. #include<bits/stdc++.h> using namespace std; ; typ ...