题目链接

hdu1693

题解

插头\(dp\)

特点:范围小,网格图,连通性

轮廓线:已决策点和未决策点的分界线

插头:存在于网格之间,表示着网格建的信息,此题中表示两个网格间是否连边

状态表示:当前点\((i,j)\)和轮廓线上\(m + 1\)个插头的状态

状态转移:



我们用\(f[i][j][s]\)表示如上的状态,最后一次决策点为\((i,j)\),轮廓线上插头状态为\(s\)的方案数

比如上图\(s = 1101001\)

之后我们扩展新的点,枚举它插头的状态进行转移



在本题中,要使最终形成若干回路,每个点度数必须为\(2\),所以我们扩展点的时候记录它已有的插头数,然后剩余的插头数就可以唯一确定

然后就可以\(O(nm2^m)\)过了这道插头\(dp\)入门题

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
using namespace std;
const int maxn = 12,maxm = 100005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int n,m,S[maxn][maxn];
LL f[maxn][maxn][1 << maxn];
void work(int C){
cls(f);
if (!S[1][1]) f[1][1][0] = 1;
else {
if (S[1][2] == 0 || S[2][1] == 0){
printf("Case %d: There are 0 ways to eat the trees.\n",C);
return;
}
f[1][1][3] = 1;
}
int maxv = (1 << m + 1) - 1,cnt,e,t;
for (int i = 1; i <= n; i++){
for (int j = 1; j <= m; j++){
if (i == n && j == m) break;
for (int s = 0; s <= maxv; s++){
if (!f[i][j][s]) continue;
if (j == m){
if (s & 1){
if (i + 2 <= n && S[i + 2][1])
f[i + 1][1][(s >> 1) << 2 | 1] += f[i][j][s];
if (S[i + 1][2])
f[i + 1][1][(s >> 1) << 2 | 2] += f[i][j][s];
}
else {
if (!S[i + 1][1]) f[i + 1][1][(s >> 1) << 2] += f[i][j][s];
else {
if (i + 2 > n || !S[i + 2][1] || !S[i + 1][2]) continue;
f[i + 1][1][(s >> 1) << 2 | 3] += f[i][j][s];
}
}
}
else {
cnt = ((s >> j) & 1) + ((s >> j + 1) & 1);
t = (s >> j) & 3; e = s ^ (t << j);
if (cnt && !S[i][j + 1]) continue;
if (cnt == 2) f[i][j + 1][e] += f[i][j][s];
else if (cnt == 1){
if (i + 1 <= n && S[i + 1][j + 1])
f[i][j + 1][e | (1 << j)] += f[i][j][s];
if (j + 2 <= m && S[i][j + 2])
f[i][j + 1][e | (1 << j + 1)] += f[i][j][s];
}
else {
if (!S[i][j + 1]) f[i][j + 1][e] += f[i][j][s];
else {
if (i + 1 > n || j + 2 > m || !S[i + 1][j + 1] || !S[i][j + 2])
continue;
f[i][j + 1][e | (3 << j)] += f[i][j][s];
}
}
}
}
}
}
LL ans = 0;
for (int s = 0; s <= maxv; s++)
ans += f[n][m][s];
printf("Case %d: There are %lld ways to eat the trees.\n",C,ans);
}
int main(){
int T = read();
REP(t,T){
n = read(); m = read();
REP(i,n) REP(j,m) S[i][j] = read();
if (n == 1 || m == 1){
if (!S[n][m]) printf("Case %d: There are 1 ways to eat the trees.\n",t);
else printf("Case %d: There are 0 ways to eat the trees.\n",t);
continue;
}
work(t);
}
return 0;
}

hdu1693 Eat the Trees 【插头dp】的更多相关文章

  1. HDU1693 Eat the Trees —— 插头DP

    题目链接:https://vjudge.net/problem/HDU-1693 Eat the Trees Time Limit: 4000/2000 MS (Java/Others)    Mem ...

  2. HDU1693 Eat the Trees 插头dp

    原文链接http://www.cnblogs.com/zhouzhendong/p/8433484.html 题目传送门 - HDU1693 题意概括 多回路经过所有格子的方案数. 做法 最基础的插头 ...

  3. hdu1693 Eat the Trees [插头DP经典例题]

    想当初,我听见大佬们谈起插头DP时,觉得插头DP是个神仙的东西. 某大佬:"考场见到插头DP,直接弃疗." 现在,我终于懂了他们为什么这么说了. 因为-- 插头DP很毒瘤! 为什么 ...

  4. HDU 1693 Eat the Trees(插头DP)

    题目链接 USACO 第6章,第一题是一个插头DP,无奈啊.从头看起,看了好久的陈丹琦的论文,表示木看懂... 大体知道思路之后,还是无法实现代码.. 此题是插头DP最最简单的一个,在一个n*m的棋盘 ...

  5. hdu 1693 Eat the Trees——插头DP

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=1693 第一道插头 DP ! 直接用二进制数表示状态即可. #include<cstdio> # ...

  6. HDU 1693 Eat the Trees ——插头DP

    [题目分析] 吃树. 直接插头DP,算是一道真正的入门题目. 0/1表示有没有插头 [代码] #include <cstdio> #include <cstring> #inc ...

  7. hdu1693:eat trees(插头dp)

    题目大意: 题目背景竟然是dota!屠夫打到大后期就没用了,,只能去吃树! 给一个n*m的地图,有些格子是不可到达的,要把所有可到达的格子的树都吃完,并且要走回路,求方案数 题解: 这题大概是最简单的 ...

  8. [Hdu1693]Eat the Trees(插头DP)

    Description 题意:在n*m(1<=N, M<=11 )的矩阵中,有些格子有树,没有树的格子不能到达,找一条或多条回路,吃完所有的树,求有多少种方法. Solution 插头DP ...

  9. 2019.01.23 hdu1693 Eat the Trees(轮廓线dp)

    传送门 题意简述:给一个有障碍的网格图,问用若干个不相交的回路覆盖所有非障碍格子的方案数. 思路:轮廓线dpdpdp的模板题. 同样是讨论插头的情况,只不过没有前一道题复杂,不懂的看代码吧. 代码: ...

随机推荐

  1. 2.0 flume、sqoop、oozie/Azkaban

    在一个完整的大数据处理系统中,除了hdfs+mapreduce+hive组成分析系统的核心之外,还需要数据采集.结果数据导出.任务调度等不可或缺的辅助系统,而这些辅助工具在hadoop生态体系中都有便 ...

  2. P,V操作及同步互斥实例

    无论是计算机考研.计算机软件水平考试.计算机操作系统期末考试还是其他计算机岗位考试,P.V原语操作都是一个常考点.下面笔者总结了关于P.V操作的一些知识. 信号量是最早出现的用来解决进程同步与互斥问题 ...

  3. 从武侠中的兵器看待数据访问工具——Hibernate Spring.Data Mybatis

    <泪痕剑>第31集,卓爷大谈自己的兵器,我从中摘录,觉得非常受用. “你错了,我们和武器之间的关系,就好像选择情人一样,不管是否擅长,都要用感情. 我少年时候用刀,青年时候仍用刀,不知道用 ...

  4. 第一次ScrumMeeting博客:团队任务分解

    团队任务分解 1. 主要任务 Alpha阶段结束后,我们要实现一个较为简陋的用户系统,并实现资源的上传和下载功能,完成"贡献点"相关内容并进行用户行为观察,以便Beta阶段完善.除 ...

  5. node.js常用方法

    1.获取真实地址 function getClientIp(req) { return req.headers['x-forwarded-for'] || req.connection.remoteA ...

  6. js操作对象属性值为字符串

    今天在项目开发中遇到一个没遇到过的问题,这个问题是需要对比两个对象a和b,a是一个只有一个属性的对象,b是一个含有多个属性对象,如果b中包含和a一模一样的属性名和值,则把这个一样的属性和值从b中删除了 ...

  7. Scrum立会报告+燃尽图(十一月二十一日总第二十九次):β阶段第二周分配任务

    此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2284 项目地址:https://git.coding.net/zhang ...

  8. Scrum立会报告+燃尽图(Beta阶段第四次)

    此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2386 项目地址:https://coding.net/u/wuyy694 ...

  9. 互评Alpha版本 - Hello World团队项目空天猎

    在测评该项目时,我找到了Hello World!团队的git,并下载了相关文件以及阅读了程序运行说明. 如图所示,我下载了一个名为 SkyHunter1.0.rar 的压缩文件包,文件包内容如下: 根 ...

  10. TCP系列48—拥塞控制—11、FRTO拥塞撤销

    一.概述 FRTO虚假超时重传检测我们之前重传章节的文章已经介绍过了,这里不再重复介绍,针对后面的示例在说明两点 1.FRTO只能用于虚假超时重传的探测,不能用于虚假快速重传的探测. 2.延迟ER重传 ...