BZOJ4898/5367 Apio2017商旅(分数规划+floyd)
如果要在某点买入某物品并在另一点卖出,肯定是走其间最短路径。于是预处理任意两点间的收益和最短路径,连完边二分答案判负环即可,可以全程floyd。注意inf大小。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 110
#define M 10010
#define K 1010
#define inf 1000000001
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,m,k,a[N][K],b[N][K],d[N][N],v[N][N],t;
ll c[N][N];
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj5367.in","r",stdin);
freopen("bzoj5367.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read(),k=read();
for (int i=;i<=n;i++)
{
for (int j=;j<=k;j++)
a[i][j]=read(),b[i][j]=read();
}
for (int i=;i<=n;i++)
for (int j=;j<=n;j++)
d[i][j]=inf;
for (int i=;i<=m;i++)
{
int x=read(),y=read(),z=read();
d[x][y]=min(d[x][y],z);
}
for (int k=;k<=n;k++)
for (int i=;i<=n;i++)
for (int j=;j<=n;j++)
d[i][j]=min(d[i][j],d[i][k]+d[k][j]);
for (int i=;i<=n;i++)
for (int j=;j<=n;j++)
for (int x=;x<=k;x++)
if (~b[j][x]&&~a[i][x]) v[i][j]=max(v[i][j],b[j][x]-a[i][x]);
int l=,r=inf,ans=;
while (l<=r)
{
int mid=l+r>>;
for (int i=;i<=n;i++)
for (int j=;j<=n;j++)
c[i][j]=1ll*d[i][j]*mid-v[i][j];
for (int k=;k<=n;k++)
for (int i=;i<=n;i++)
for (int j=;j<=n;j++)
c[i][j]=min(c[i][j],c[i][k]+c[k][j]);
bool flag=;for (int i=;i<=n;i++) if (c[i][i]<=) {flag=;break;}
if (flag) l=mid+,ans=mid;
else r=mid-;
}
cout<<ans;
return ;
}
BZOJ4898/5367 Apio2017商旅(分数规划+floyd)的更多相关文章
- 【BZOJ4898】[Apio2017]商旅 分数规划+SPFA
[BZOJ4898][Apio2017]商旅 Description 在广阔的澳大利亚内陆地区长途跋涉后,你孤身一人带着一个背包来到了科巴.你被这个城市发达而美丽的市场所深深吸引,决定定居于此,做一个 ...
- [APIO2017]商旅——分数优化+floyd+SPFA判负环+二分答案
题目链接: [APIO2017]商旅 枚举任意两个点$(s,t)$,求出在$s$买入一个物品并在$t$卖出的最大收益. 新建一条从$s$到$t$的边,边权为最大收益,长度为原图从$s$到$t$的最短路 ...
- BZOJ 4898 Luogu P3778 [APIO2017]商旅 (分数规划、最短路)
题目链接: (bzoj)https://www.lydsy.com/JudgeOnline/problem.php?id=4898 (luogu)https://www.luogu.org/probl ...
- 【bzoj4898】[Apio2017]商旅 Floyd+分数规划+Spfa
题目描述 有n个点.m条边.和k种商品.第$i$个点可以以$B_{ij}$的价格买入商品$j$,并以$S_{ij}$的价格卖出.任何时候只能持有一个商品.求一个环,使得初始不携带商品时以某种交易方式走 ...
- bzoj4898 & loj2308 [Apio2017]商旅 最短路+01分数规划
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4898 https://loj.ac/problem/2308 题解 发现我们可以把整个环路分成 ...
- luogu3778/bzoj4898 商旅 (floyd+分数规划+spfa)
首先floyd求出来每两点间的最短距离,然后再求出来从某点买再到某点卖的最大收益 问题就变成了找到一个和的比值最大的环 所以做分数规划,二分出来那个答案r,把边权变成w[i]-r*l[i],再做spf ...
- bzoj 4898: [Apio2017]商旅【Floyd+分数规划+二分】
其实并不会分数规划 因为要最大化 ans=总收益/总路程 ,所以考虑二分答案,找到一条 ans<=总收益/总路程 的回路.先预处理出d(i,j)为(i,j)最短路,w(i,j)为在i买某个物品在 ...
- 【算法】01分数规划 --- HNOI2009最小圈 & APIO2017商旅 & SDOI2017新生舞会
01分数规划:通常的问法是:在一张有 \(n\) 个点,\(m\) 条边的有向图中,每一条边均有其价值 \(v\) 与其代价 \(w\):求在图中的一个环使得这个环上所有的路径的权值和与代价和的比率最 ...
- BZOJ 4898 [APIO2017] 商旅 | SPFA判负环 分数规划
BZOJ 4898 [APIO2017] 商旅 | SPFA判负环 分数规划 更清真的题面链接:https://files.cnblogs.com/files/winmt/merchant%28zh_ ...
随机推荐
- day 1类 对象 属性 方法
1. 解决吃啤酒鸭的问题 第一种方式(面向过程): 1)养鸭子 2)鸭子长成 3)杀 4)作料 5)烹饪 6)吃 7)卒 第二种方式(面向对象): 1)找个卖啤酒鸭的人 2)给钱 交易 3)吃 4)胖 ...
- 1111: [POI2007]四进制的天平Wag
1111: [POI2007]四进制的天平Wag 链接 题意: 用一些四进制数,相减得到给定的数,四进制数的数量应该尽量少,满足最少的条件下,求方案数. 分析: 这道题拖了好久啊. 参考Claris的 ...
- Lua学习笔记(7): 模块
模块 模块就像是c语言工程项目目录里的.h.c文件或外部依赖项,为某一个文件的代码提供依赖,其实就是把工作分成几个模块,方便项目的管理,提高开发效率和维护效率 在Lua中,模块其实就是一个表,实现方式 ...
- Python数据结构 将列表作为栈和队列使用
列表作为栈使用 Python列表方法使得列表作为堆栈非常容易,最后一个插入,最先取出(“后进先出”).要添加一个元素到堆栈的顶端,使用 append() .要从堆栈顶部取出一个元素,使用 pop() ...
- 622.设计循环队列 javascript实现
设计你的循环队列实现. 循环队列是一种线性数据结构,其操作表现基于 FIFO(先进先出)原则并且队尾被连接在队首之后以形成一个循环.它也被称为“环形缓冲器”. 循环队列的一个好处是我们可以利用这个队列 ...
- 译 - Cassandra 数据建模的基本规则
Basic Rules of Cassandra Data Modeling 原文地址:http://www.datastax.com/dev/blog/basic-rules-of-cassandr ...
- asp.net mvc 使用Ajax调用Action 返回数据【转】
使用asp.net mvc 调用Action方法很简单. 一.无参数方法. 1.首先,引入jquery-1.5.1.min.js 脚本,根据版本不同大家自行选择. <script src=& ...
- python基础知识-7-内存、深浅、文件操作
python其他知识目录 1.一些对内存深入理解的案例 以下列举列表,列表/字典/集合这些可变类型都是一样的原理 变量是个地址,指向存储数据的内存空间的地址,它的实质就相当于c语言里的指针.变量和数据 ...
- Linux 150命令之 文件和目录操作命令 chattr lsattr find
chattr添加隐藏权限 lsattr查看隐藏权限 参数 a文件内容不能删除,只能追加 >> [root@mysql tmp]# chattr +a 1.txt [root@mysql t ...
- 第三次ScrumMeeting博客
第三次ScrumMeeting博客 本次会议于10月27日(五)22时整在3公寓725房间召开,持续10分钟. 与会人员:刘畅.方科栋.窦鑫泽.张安澜. 1. 每个人的工作(有Issue的内容和链接) ...