【bzoj4321】queue2 dp
题目描述
输入
输出
样例输入
4
样例输出
2
题解
dp
老套路了,考虑把数从小到大插入的过程进行dp。
设 $f[i][j]$ 表示 $1\sim i$ 的排列,有 $j$ 组相邻的相差1,且 $i$ 和 $i-1$ 不相邻的方案数;
设 $g[i][j]$ 表示 $1\sim i$ 的排列,有 $j$ 组相邻的相差1,且 $i$ 和 $i-1$ 相邻的方案数。
那么考虑插入 $i+1$ 的位置,有:不破坏空位且不与 $i$ 相邻、不破坏空位且与 $i$ 相邻、破坏空位且不与 $i$ 相邻、破坏空位且与 $i$ 相邻(只发生在 $g$ 的转移)4种。分别推一下方案数即可。
最后的答案就是 $f[n][0]$ 。
时间复杂度 $O(n^2)$ 。
另外把前几项丢到oeis上可以得到线性递推式 $a_n=(n+1)a_{n-1}-(n-2)a_{n-2}-(n-5)a_{n-3}+(n-3)a_{n-4}$ ,就能 $O(n)$ 求解了,感觉像是某容斥然而并不能推出来...
#include <cstdio>
#define mod 7777777
long long f[1010][1010] , g[1010][1010];
int main()
{
int n , i , j;
scanf("%d" , &n);
f[1][0] = 1;
for(i = 1 ; i < n ; i ++ )
{
for(j = 0 ; j < i ; j ++ )
{
f[i + 1][j] = (f[i + 1][j] + f[i][j] * (i - j - 1)) % mod;
g[i + 1][j + 1] = (g[i + 1][j + 1] + f[i][j] * 2) % mod;
if(j) f[i + 1][j - 1] = (f[i + 1][j - 1] + f[i][j] * j) % mod;
f[i + 1][j] = (f[i + 1][j] + g[i][j] * (i - j)) % mod;
g[i + 1][j + 1] = (g[i + 1][j + 1] + g[i][j]) % mod;
if(j) f[i + 1][j - 1] = (f[i + 1][j - 1] + g[i][j] * (j - 1)) % mod;
g[i + 1][j] = (g[i + 1][j] + g[i][j]) % mod;
}
}
printf("%lld\n" , f[n][0]);
return 0;
}
【bzoj4321】queue2 dp的更多相关文章
- #6【bzoj4321】queue2 dp
题目描述 n 个沙茶,被编号 1~n.排完队之后,每个沙茶希望,自己的相邻的两人只要无一个人的编号和自己的编号相差为 1(+1 或-1)就行: 现在想知道,存在多少方案满足沙茶们如此不苛刻的条件. ...
- LG4719 【模板】动态dp 及 LG4751 动态dp【加强版】
题意 题目描述 给定一棵\(n\)个点的树,点带点权. 有\(m\)次操作,每次操作给定\(x,y\),表示修改点\(x\)的权值为\(y\). 你需要在每次操作之后求出这棵树的最大权独立集的权值大小 ...
- 【专题】数位DP
[资料] ★记忆化搜索:数位dp总结 之 从入门到模板 by wust_wenhao 论文:浅谈数位类统计问题 数位计数问题解法研究 [记忆化搜索] 数位:数字从低位到高位依次为0~len-1. 高位 ...
- 洛谷P4719 【模板】"动态 DP"&动态树分治
[模板]"动态 DP"&动态树分治 第一道动态\(DP\)的题,只会用树剖来做,全局平衡二叉树什么的就以后再学吧 所谓动态\(DP\),就是在原本的\(DP\)求解的问题上 ...
- LG5056 【模板】插头dp
题意 题目背景 ural 1519 陈丹琦<基于连通性状态压缩的动态规划问题>中的例题 题目描述 给出n*m的方格,有些格子不能铺线,其它格子必须铺,形成一个闭合回路.问有多少种铺法? 输 ...
- 【专题】区间dp
1.[nyoj737]石子合并 传送门:点击打开链接 描述 有N堆石子排成一排,每堆石子有一定的数量.现要将N堆石子并成为一堆.合并的过程只能每次将相邻的两堆石子堆成一堆,每次合并花费的代价为这 ...
- 【BZOJ4976】宝石镶嵌 DP
[BZOJ4976]宝石镶嵌 Description 魔法师小Q拥有n个宝石,每个宝石的魔力依次为w_1,w_2,...,w_n.他想把这些宝石镶嵌到自己的法杖上,来提升法杖的威力.不幸的是,小Q的法 ...
- NOJ 1111 保险箱的密码 【大红】 [区间dp]
传送门 保险箱的密码 [大红] 时间限制(普通/Java) : 1000 MS/ 3000 MS 运行内存限制 : 65536 KByte总提交 : 118 测 ...
- 【CF480D】Parcels DP
[CF480D]Parcels 题意:有一个栈,有n个物品,每个物品可以选或不选.如果选了第i个物品,则获得$v_i$的收益,且第i个物品必须在$in_i$时刻入栈,$out_i$时刻出栈.每个物品还 ...
随机推荐
- 20155320《Java程序设计》实验一(Java开发环境的熟悉)实验报告
20155320<Java程序设计>实验一(Java开发环境的熟悉)实验报告 实验内容及步骤 (一)命令行下Java程序开发 步骤一:首先在cmd中输入d:和cd ljq20155320进 ...
- 实现Django ORM admin view中model字段choices取值自动更新的一种方法
有两个表,一个是记录网站信息的site表,结构如下: CREATE TABLE `site` ( `id` ) unsigned NOT NULL AUTO_INCREMENT, `name` ) N ...
- The filename 未命名.ipa in the package contains an invalid character(s). The valid characters are: A-Z, a-z, 0-9, dash, period, underscore, but the name cannot start with a dash, period, or underscore
The filename 未命名.ipa in the package contains an invalid character(s). The valid characters are: A-Z ...
- 九、EnterpriseFrameWork框架基础功能之消息管理
记得阿朱在<走出软件作坊>一书中有一章讲客户提的需求太邪门了,鼠标键盘不太会用要程序员开发一个语音输入功能,还要系统中带类似QQ的功能:确实刚开始的客户的想法有点天真,但是随着信息化的越来 ...
- 帮你理解学习lambda式
概要 窗前明月光,疑是地上霜,举头望明月,低头思故乡.别误会这是开头诗与以下文章没任何关系. 今天我想给大家说道说道 C# lambda表达式,不废话,下面开始说道! lambda lambd ...
- html查漏补缺之meta标签
什么是meta标签? meta标签是html标记head区的一个关键标签,它位于HTML文档的<head>和<title>之间(有些也不是在<head>和<t ...
- 学习HTML 第三节.接近正题:HTML样式-CSS级联样式表
CSS (Cascading Style Sheets)级联样式表 内联样式 内联样式- 在HTML元素中使用"style" 属性 使用内联样式的方法是在相关的标签中使用样式属性. ...
- 第一篇:一天学会MongoDB数据库之Python操作
本文仅仅学习使用,转自:https://www.cnblogs.com/suoning/p/6759367.html#3682005 里面新增了如果用用Python代码进行增删改查 什么是MongoD ...
- Python数据结构 将列表作为栈和队列使用
列表作为栈使用 Python列表方法使得列表作为堆栈非常容易,最后一个插入,最先取出(“后进先出”).要添加一个元素到堆栈的顶端,使用 append() .要从堆栈顶部取出一个元素,使用 pop() ...
- 【实用】巧用For xml 生成HTML代码
可以利用SQL的For xml直接生成HTML结构,比如我想生成如下结构: <li> <img src="..."/> <input type=&qu ...