题意

\(n\) 个点 \(m\) 条边的无向带权图求全局最小割。\(n\le 500,m\le \frac{n(n-1)}{2}\) 。

分析

参考了 这篇博客,去给他点赞。

嘛,今天研究了一下全局最小割。

全局最小割是什么呀?

运用经典的最大流最小割,我们可以在网络流复杂度内求出对于两个点 \(s,t\) ,把图分成 \(s\in S\) 集和 \(t\in T\) 集的需要去掉的最小边权和。我们称这种割为对于一组点 \((s,t)\) 的 \(s-t\) 割。

全局最小割,就是把整个无向图割开,却不指定怎么割,求最小边权和。

用之前的方法,\(O(n*网络流)\) 可以分治得到最小割树,从而求出任意两点间的最小割,那么取最小边权就是答案。但已知理论复杂度比较优秀的网络流算法复杂度也达到 \(O(n^2\sqrt m)\) (最高标号预留推进),再乘上 \(n\) ,这是一个很高的复杂度。

是否有办法优化呢?这个问题中 不指定要割什么 这个条件并没有用上,可以从这里入手。

下面就来介绍全局最小割的 Stoer-Wagner 算法。

整体思路

解决这个问题,有一个关键的性质需要利用。

设 \(s,t\) 为图中两点,那么在任意一个割中,它们要么在同一个集合中,要么在不同的集合中。

算法的整体思路是,我们不指定割开哪两个点,而是设计一个函数 \(f(G)\) ,返回一个三元组 \((s,t,c)\) ,表示这个图中 \((s,t)\) 的最小割为 \(c\) 。注意,这个函数告诉我们它割开哪两个点,而不是我们告诉它 。利用上面的性质,要么这个图的全局最小割要么就是 \(c\) ,要么 \(s,t\) 在同一集合中。

为什么是这样呢?显然图的全局最小割一定小于等于 \(c\) ,若全局最小割下 \(s,t\) 在不同集合中,而全局最小割却小于 \(c\) ,那么必然存在更小的 \(s-t\) 割,这与 \(c\) 是 \(s-t\) 最小割矛盾。

我们把答案对 \(c\) 取 \(\min\),接下来就讨论 \(s,t\) 在同一集合中的情况。若是这样,那么其实可以把 \(s,t\) 并起来,因为 \(s\) 与 \(t\) 中间的边是不会割掉的。所以就把 \(s,t\) 并起来,把边合并就好啦!

这样进行,直到图中只剩下一个点,我们就得到了答案。显然上面的过程进行了 \(n-1\) 次,所以复杂度为 \(O(n(m+f))\) 。接下来只要我们能够有一个函数,快速地告诉我们一对点间的最小割,问题就解决啦。

函数 \(f(G)\)

算法流程

  • 有一个空集 \(A\) ,最开始在 \(G\) 中任意找一个点放进 \(A\) 。
  • 不断在 \(G\) 中找到一个点 \(v\notin A\) 使得它到 \(A\) 中所有连边权值和最大,把这个点加入 \(A\) ,直到 \(A=V\) 。
  • 倒数第二个加入 \(A\) 和最后加入 \(A\) 的两点即分别为 \(s,t\) ,它们的最小割是 \(t\) 到 \(V-\lbrace t \rbrace\) 的边权和。

下面证明这个算法的正确性。实际上要说明的是,对于任意一个点集的划分 \(V=S+T\) 使得 \(s\in S,t\in T\) ,有 \(cut(V-\lbrace t\rbrace,\lbrace t\rbrace)\le cut(S,T)\) 。

一些记号

  • \(w(e)\) ,边 \(e\) 的权值;\(w(x,y)\) ,边 \((x,y)\) 的权值
  • \(w(S,x)=\sum _{v\in S,(x,v)\in E}w(x,v)\)
  • \(C\) ,对于点集的划分 \(S,T\) 的最小割
  • \(a\) ,加入 \(A\) 的点的序列,\(a_i\) 表示第 \(i\) 个加入 \(A\) 的点
  • \(A_x\) ,加入 \(x\) 之前加入 \(A\) 的点的集合,不包含 \(x\)
  • \(C_x\) ,\(\lbrace (u,v)|u,v\in A_x\cap\lbrace x\rbrace,(u,v)\in C\rbrace\) 。此处 \(C\) 就是上面的那个,即 \(C\) 在 \(A_x\cap \lbrace x\rbrace\) 中的诱导割。
  • \(B\setminus C\) ,\(B\) 集合中去掉集合 \(C\) 剩下的集合,即 \(C\) 在 \(B\) 中的补集。

接下来要证明,对于所有点 \(v\) 满足 \(a\) 中排 \(v\) 前面的点与 \(v\) 不在割 \(C\) 的同一侧,有 \(w(A_v,v)\le C_v\) 。若能得到这个,由于 \(t\) 是满足这个条件的,就有 \(w(A_t,t)=w(V-\lbrace t\rbrace,t)=cut(V-\lbrace t\rbrace,\lbrace t\rbrace)\le C_t\) ,即得到上面的结论。

对第一个满足条件的 \(v\) ,等号成立,因为 \(v\) 是第一个不与前面在同一集合中的点,所以 \(C_v\) 就是 \(w(A_v,v)\) ,这些边是一定要割掉的。下面对 \(v\) 用归纳法。

设对于一个满足条件的 \(v\) 以及前面满足条件的点,结论都成立,那么对于 \(v\) 的下一个点 \(u\) ,说明这个结论成立。

首先有 \(w(A_u,u)=w(A_v,u)+w(A_u\setminus A_v,u)\) ,这是显然的,因为它是对集合 \(A_u\) 的一个划分。

由归纳假设可得,\(w(A_v,v)\le C_v\) ,又因为算法过程告诉我们 \(u\) 在 \(v\) 后面加入,所以在加入 \(v\) 之前一刻,\(v\) 与 \(A_v\) 的连边权值和大于 \(u\) 与 \(A_v\) 连边的权值和,所以有 \(w(A_v,u)\le w(A_v,v)\) ,于是得到:

\[\begin{aligned}
w(A_v,u)\le w(A_v,v)\le C_v && (1)
\end{aligned}
\]

\(C_u\) 的含义,是在一个 \((S,T)\) 割中要把 \(A_u\cap \lbrace u\rbrace\) 割成两部分的那部分。这一定包含了 \(C_v\) ,因为 \(v\) 与之前的那个也不再同一个集合中。\(w(A_u\setminus A_v,u)\) 一定是要割掉的,否则就无法保证 \(u\) 与之前的那个不在同一集合中。于是得到:

\[\begin{aligned}
C_v+w(A_u\setminus A_v,u)\le C_u && (2)
\end{aligned}
\]

联立上两式,得到:

\[w(A_u,u)=w(A_v,u)+w(A_u\setminus A_v,u)\le C_u
\]

这样我们证明了结论。

函数 \(f\) 的复杂度直接做是 \(O(m+n^2)\) ,可以用斐波那契堆优化到 \(O(m+n\log n)\) (普通堆是 \(O((m+n)\log n)\) ,在稠密图中与 \(O(m+n^2)\) 没有什么区别)。因此整个算法的复杂度为 \(O(nm+n^3)\) 或 \(O(nm+n^2\log n)\) 。

代码

#include<cstdio>
#include<cctype>
#include<climits>
#include<cstring>
#include<algorithm>
#define M(x) memset(x,0,sizeof x)
using namespace std;
inline int read() {
int x=0,f=1;
char c=getchar();
for (;!isdigit(c);c=getchar()) if (c=='-') f=-1;
for (;isdigit(c);c=getchar()) x=x*10+c-'0';
return x*f;
}
const int maxn=1e3+1;
int n,m;
namespace graph {
int d[maxn],f[maxn][maxn],ed;
bool no[maxn],ina[maxn];
inline void clear() {M(no),M(f);}
inline void add(int x,int y,int w) {
f[x][y]+=w;
}
void newlink(int nw,int s,int t) {
for (int v=1;v<=ed;++v) if (!no[v] && v!=t) {
add(nw,v,f[s][v]);
add(v,nw,f[s][v]);
}
}
inline void push(int x) {
ina[x]=true;
for (int v=1;v<=ed;++v) if (!no[v] && !ina[v]) d[v]+=f[x][v];
}
int glob(int cs,int &s,int &t) {
M(d),M(ina);
int a;
for (a=1;a<=ed && (no[a] || ina[a]);++a);
push(t=a);
while (cs--) {
int p=0;
for (int i=1;i<=ed;++i) if (!no[i] && !ina[i] && d[i]>d[p]) p=i;
s=t,t=p;
push(p);
}
return d[t];
}
int run() {
int ret=INT_MAX,here=(n-1)<<1;
for (ed=n;ed<=here;++ed) {
int s=0,t=0,g=glob((n<<1)-ed-1,s,t);
ret=min(ret,g);
int nw=ed+1;
newlink(nw,s,t);
newlink(nw,t,s);
no[s]=no[t]=true;
}
return ret;
}
}
int main() {
#ifndef ONLINE_JUDGE
freopen("test.in","r",stdin);
#endif
while (~scanf("%d%d",&n,&m)) {
graph::clear();
for (int i=1;i<=m;++i) {
int x=read()+1,y=read()+1,w=read();
graph::add(x,y,w),graph::add(y,x,w);
}
int ans=graph::run();
printf("%d\n",ans);
}
return 0;
}

poj2914-Minimum Cut的更多相关文章

  1. poj2914 Minimum Cut 全局最小割模板题

    Minimum Cut Time Limit: 10000MS   Memory Limit: 65536K Total Submissions: 8324   Accepted: 3488 Case ...

  2. POJ2914 Minimum Cut —— 最小割

    题目链接:http://poj.org/problem?id=2914 Minimum Cut Time Limit: 10000MS   Memory Limit: 65536K Total Sub ...

  3. POJ Minimum Cut

    Minimum Cut Time Limit: 10000MS   Memory Limit: 65536K Total Submissions: 9302   Accepted: 3902 Case ...

  4. POJ 2914 Minimum Cut

    Minimum Cut Time Limit: 10000MS   Memory Limit: 65536K Total Submissions: 9319   Accepted: 3910 Case ...

  5. hdu 5452 Minimum Cut 树形dp

    Minimum Cut Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=54 ...

  6. POJ 2914 Minimum Cut 最小割图论

    Description Given an undirected graph, in which two vertices can be connected by multiple edges, wha ...

  7. HDU 6214.Smallest Minimum Cut 最少边数最小割

    Smallest Minimum Cut Time Limit: 2000/2000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Oth ...

  8. HDU 6214 Smallest Minimum Cut(最少边最小割)

    Problem Description Consider a network G=(V,E) with source s and sink t. An s-t cut is a partition o ...

  9. Smallest Minimum Cut HDU - 6214(最小割集)

    Smallest Minimum Cut Time Limit: 2000/2000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Oth ...

  10. HDU - 6214:Smallest Minimum Cut(最小割边最小割)

    Consider a network G=(V,E) G=(V,E) with source s s and sink t t . An s-t cut is a partition of nodes ...

随机推荐

  1. 关于第11周课堂mini dc的课堂练习

    测试代码: 码云链接 import java.util.Scanner; public class MyDCTester { public static void main(String[] args ...

  2. 20155307 2016-2017-2 《Java程序设计》第4周学习总结

    20155307 2016-2017-2 <Java程序设计>第4周学习总结 教材学习内容总结 所谓继承,讲的就是出现很多很多相同的部分的话,就把这个部分变成"父类", ...

  3. 2016-2017-2 20155339 《Java面向对象程序设计》实验三敏捷开发与XP实践实验报告

    2016-2017-2 20155339 <Java面向对象程序设计>实验三敏捷开发与XP实践实验报告 实验内容 XP基础 XP核心实践 相关工具 实验内容 一.在IDEA中使用工具(Co ...

  4. Web前端优化常用规则

    一,尽量减少HTTP请求 二,使用CDN(内容分发网络) 三,添加Expire/Cache-Control头 四,启用Gzip压缩 五,将CSS放在层叠样式表放到head里面 六,将Script放到页 ...

  5. 【CF543E】Listening to Music

    [CF543E]Listening to Music 题面 洛谷 题目大意 给你一个长度为\(n\)序列\(a_i\),和一个常数\(m\),定义一个函数\(f(l,x)\)为\([l,l+m-1]\ ...

  6. 《Flutter实战》开源电子书

    <Flutter实战>开源电子书 <Flutter实战> 开源了,本书为 Flutter中文网开源电子书项目,本书系统介绍了Flutter技术的各个方面,本书属于原创书籍(并非 ...

  7. ideal快捷键

    百度一搜索,发现很多快捷键说明,我但是有些说得不对的,我列出来的这些快捷键,有一部分是需要你百度好久,甚至百度一上午才能搜索出来的,并且戴着老花镜.这样的话,在实际工作者,对于初级程序员来说,成本太高 ...

  8. 华为云分布式缓存服务DCS与开源服务差异对比

    华为云分布式缓存DCS提供单机.主备.集群等丰富的实例类型,满足用户高读写性能及快速数据访问的业务诉求.支持丰富的实例管理操作,帮助用户省去运维烦恼.用户可以聚焦于业务逻辑本身,而无需过多考虑部署.监 ...

  9. hadoop之mapper类妙用

    1. Mapper类 首先 Mapper类有四个方法: (1) protected void setup(Context context) (2) Protected void map(KEYIN k ...

  10. react native中state和ref的使用

    react native中state和ref的使用 因props是只读的,页面中需要交互的情况我们就需要用到state. 一.如何使用state 1:初始化state 第一种方式: construct ...