Given a string s, find the longest palindromic subsequence's length in s. You may assume that the maximum length of s is 1000.

Example 1:
Input:

"bbbab"

Output:

4

One possible longest palindromic subsequence is "bbbb".

Example 2:
Input:

"cbbd"

Output:

2

One possible longest palindromic subsequence is "bb".

Approach #1: DP. [Java]

class Solution {
public int longestPalindromeSubseq(String s) {
int len = s.length();
int[][] dp = new int[len+1][len+1]; for (int l = 1; l <= len; ++l) {
for (int i = 0; i <= len - l; ++i) {
int j = i + l - 1;
if (i == j) {
dp[i][j] = 1;
continue;
} else if (s.charAt(i) == s.charAt(j))
dp[i][j] = dp[i+1][j-1] + 2;
else
dp[i][j] = Math.max(dp[i+1][j], dp[i][j-1]); }
} return dp[0][len-1];
}
}

  

Analysis:

This problem is similar with 486. Predict the Winner.

dp[i][j] : the longest palindromic subsequence from i to j.

stage: length of substring.

for len = 1 to n:

  for i = 0 to n-len:

    j = i + len - 1;

    if s[i] == s[j]:

      dp[i][j] = dp[i+1][j-1] + 2;

    else:

      dp[i][j] = max(dp[i+1][j], dp[i][j-1]);

ans : dp[0][len-1].

Approach #2: optimization. [C++]

class Solution {
public:
int longestPalindromeSubseq(string s) {
int len = s.length();
vector<int> dp0(len, 0);
vector<int> dp1(len, 0);
vector<int> dp2(len, 0); for (int l = 1; l <= len; ++l) {
for (int i = 0; i <= len - l; ++i) {
int j = i + l - 1;
if (i == j) {
dp0[i] = 1;
continue;
} else if (s[i] == s[j]) {
dp0[i] = dp2[i+1] + 2;
} else {
dp0[i] = max(dp1[i+1], dp1[i]);
}
}
dp0.swap(dp1);
dp2.swap(dp0);
}
return dp1[0];
}
};

  

Reference:

http://zxi.mytechroad.com/blog/dynamic-programming/leetcode-516-longest-palindromic-subsequence/

516. Longest Palindromic Subsequence的更多相关文章

  1. LN : leetcode 516 Longest Palindromic Subsequence

    lc 516 Longest Palindromic Subsequence 516 Longest Palindromic Subsequence Given a string s, find th ...

  2. 516. Longest Palindromic Subsequence最长的不连续回文串的长度

    [抄题]: Given a string s, find the longest palindromic subsequence's length in s. You may assume that ...

  3. [LeetCode] 516. Longest Palindromic Subsequence 最长回文子序列

    Given a string s, find the longest palindromic subsequence's length in s. You may assume that the ma ...

  4. LC 516. Longest Palindromic Subsequence

    Given a string s, find the longest palindromic subsequence's length in s. You may assume that the ma ...

  5. [leetcode]516. Longest Palindromic Subsequence最大回文子序列

    Given a string s, find the longest palindromic subsequence's length in s. You may assume that the ma ...

  6. 【LeetCode】516. Longest Palindromic Subsequence 最长回文子序列

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题思路 代码 刷题心得 日期 题目地址:https://le ...

  7. 516 Longest Palindromic Subsequence 最长回文子序列

    给定一个字符串s,找到其中最长的回文子序列.可以假设s的最大长度为1000. 详见:https://leetcode.com/problems/longest-palindromic-subseque ...

  8. 【leetcode】516. Longest Palindromic Subsequence

    题目如下: 解题思路:很经典的动态规划题目,但是用python会超时,只好用C++了. 代码如下: class Solution { public: int longestPalindromeSubs ...

  9. [LeetCode] Longest Palindromic Subsequence 最长回文子序列

    Given a string s, find the longest palindromic subsequence's length in s. You may assume that the ma ...

随机推荐

  1. 「小程序JAVA实战」小程序的个人信息作品,收藏,关注(66)

    转自:https://idig8.com/2018/09/24/xiaochengxujavashizhanxiaochengxudegerenxinxizuopinshoucangguanzhu65 ...

  2. We could not complete your iTunes Store request

    We could not complete your iTunes Store request.An unknown error occurred(502). There was an error i ...

  3. nginx tcp负载均衡配置

    1. nginx从1.9.0后引入模块ngx_stream_core_module,模块是没有编译的,需要用到编译需添加--with-stream配置参数 2. 在 nginx.conf 文件中, 与 ...

  4. 记一次 .net core publish 之后找不到视图文件的问题

    周末将VS从15.3 升级到15.5 ,之后又将VS版本由社区版,升级为企业版. 于是问题来了: 项目publish 之后找不到视图文件了??? 问题很是蛋疼,后来仔细想了一下,也没有动什么东西.查看 ...

  5. springmvc 类型转换器 数据回显及提示信息

    处理器的写法: 类型转换器的写法: 类型转换器在springmvc.xml中的配置如下: index.jsp的写法:

  6. hadoop之HDFS学习笔记(二)

    主要内容:hdfs的核心工作原理:namenode元数据管理机制,checkpoint机制:数据上传下载流程 1.hdfs的核心工作原理 1.1.namenode元数据管理要点 1.什么是元数据? h ...

  7. JQuery:选择器、动画、AJAX请求

    选择器 1.事件编程与动画效果 一个选择器可以在概念上理解为指针.借助与JQuery库中的选择器$,线程可以获取到界面元素的引用,从而可以调用 ready().click()方法把用户事件和动作方法关 ...

  8. input checkbox 复选框大小修改

    设置zoom属性(放大) 利用style: <input type="checkbox" name="returnfee"  style="zo ...

  9. 团队作业7——alpha阶段之事后诸葛亮分析

    事后诸葛亮分析 1. 设想和目标 1.1 我们的软件要解决什么问题?是否定义得很清楚?是否对典型用户和典型场景有清晰的描述? 解决查询物流信息步骤繁琐的问题.定义还算清楚.典型用户主要针对一些不熟悉淘 ...

  10. Basic4android v3.50 发布

    这次发布的主要是debug 的增强.说实话,在这一方面B4a 比delphi做的要好.希望delphi 在新的版本里面 能进一步加强. I'm happy to release Basic4andro ...