多变量线性回归 matlab
%multivariate_linear_regression
data=load('data.txt');
x=data(:,1:2);
y=data(:,3);
m=length(x(:,1));
x=[ones(m,1),x];
sigma=std(x);
mu=mean(x);
x(:,2)=(x(:,2)-mu(2))./sigma(2);
x(:,3)=(x(:,3)-mu(3))./sigma(3);
theta=zeros(size(x(1,:)))';
alpha=0.18;
j=zeros(50,1);%迭代次数
for num=1:50
j(num)=(x*theta-y)'*(x*theta-y)/(m*2);
theta=theta-((x*theta-y)'*x)'*alpha/m/2;
end
%代价函数绘制
subplot(2,1,1)
plot(0:49,j(1:50),'g-')
xlabel('number of interations')
ylabel('cost j')
%预测
subplot(2,1,2)
realx=[1,4.1,3.04];
tempx=realx;
realx(2)=(realx(2)-mu(2))./sigma(2);
realx(3)=(realx(3)-mu(3))./sigma(3);
pre_y=realx*theta
stem3(data(:,1),data(:,2),data(:,3),'fill','b-.*');
hold on
stem3(tempx(2),tempx(3),pre_y,'filled','r-')
运行结果:

多变量线性回归 matlab的更多相关文章
- deep learning 练习 多变量线性回归
多变量线性回归(Multivariate Linear Regression) 作业来自链接:http://openclassroom.stanford.edu/MainFolder/Document ...
- 斯坦福第四课:多变量线性回归(Linear Regression with Multiple Variables)
4.1 多维特征 4.2 多变量梯度下降 4.3 梯度下降法实践 1-特征缩放 4.4 梯度下降法实践 2-学习率 4.5 特征和多项式回归 4.6 正规方程 4.7 正规方程及不可逆性 ...
- Stanford机器学习---第二讲. 多变量线性回归 Linear Regression with multiple variable
原文:http://blog.csdn.net/abcjennifer/article/details/7700772 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...
- python实现多变量线性回归(Linear Regression with Multiple Variables)
本文介绍如何使用python实现多变量线性回归,文章参考NG的视频和黄海广博士的笔记 现在对房价模型增加更多的特征,例如房间数楼层等,构成一个含有多个变量的模型,模型中的特征为( x1,x2,..., ...
- 机器学习(三)--------多变量线性回归(Linear Regression with Multiple Variables)
机器学习(三)--------多变量线性回归(Linear Regression with Multiple Variables) 同样是预测房价问题 如果有多个特征值 那么这种情况下 假设h表示 ...
- Ng第四课:多变量线性回归(Linear Regression with Multiple Variables)
4.1 多维特征 4.2 多变量梯度下降 4.3 梯度下降法实践 1-特征缩放 4.4 梯度下降法实践 2-学习率 4.5 特征和多项式回归 4.6 正规方程 4.7 正规方程及不可逆性 ...
- Andrew Ng机器学习第五章——多变量线性回归
一.多变量线性回归的技巧之一——特征缩放 1.为什么要使用特征缩放? 特征缩放用来确保特征值在相似的范围之内. 设想这样一种情况(房价预测),两个特征值分别是房子的大小和卧室的数量.每个特征值所处的范 ...
- 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 4_Linear Regression with Multiple Variables 多变量线性回归
Lecture 4 Linear Regression with Multiple Variables 多变量线性回归 4.1 多维特征 Multiple Features4.2 多变量梯度下降 Gr ...
- 机器学习 (二) 多变量线性回归 Linear Regression with Multiple Variables
文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人 ...
随机推荐
- Cobbler无人值守安装linux系统
简介 Cobbler是一个Linux服务器安装的服务,可以通过网络启动(PXE)的方式来快速安装.重装物理服务器和虚拟机,同时还可以管理DHCP,DNS等. Cobbler可以使用命令行方式管理,也提 ...
- Java Servelet
1.服务器端运行的程序 2.Servelet三个方法 init service 抽象方法 destory 这三个方法构成了servelet的生命周期 3.步骤 1.在web.xml中 描述了servl ...
- WPF 使用附加属性增加控件属性
使用附加属性增加控件属性,使得这个附加属性在使用的时候没有局限性,可以在任何的控件中使用它来增加所需要的属性,使得控件的属性使用起来非常灵活 一.自定义附加属性 using System; using ...
- 算法之经典排序-冒泡排序(bubble sort)
冒泡排序 它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来.走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成. 这个算法的名字由来是因为越大的元 ...
- 十分钟理解Actor模式
Actor模式是一种并发模型,与另一种模型共享内存完全相反,Actor模型share nothing.所有的线程(或进程)通过消息传递的方式进行合作,这些线程(或进程)称为Actor.共享内存更适合单 ...
- 【AngularJs】---JSONP跨域访问数据传输(JSON_CALLBACK)
大家会自然想到只有一个字母之差的JSON吧~ JSON(JavaScript Object Notation)和JSONP(JSON with Padding)虽然只有一个字母的差别,但其实他们根本不 ...
- postgresql 备份与恢复
备份 C:\PostgreSQL\\bin>pg_dump -h localhost -p -U postgres Mes > d:/.bak 恢复 C:\PostgreSQL\\bin& ...
- swagger api文档添加jwt授权配置
最近写的swagger文档,要加jwt授权,所以几经google终于搞定了,简简单单几行配置如下: securityDefinitions: APIKey: type: apiKey name: Au ...
- flask中的数据操作
flask中数据访问: pip install flask-sqlalemy 创建数据: 创建app的工厂 from flask import Flask from flask_sqlalchemy ...
- Java基础教程(7)--运算符
现在,我们已经学会了如何声明和初始化变量,但你可能想知道如何操作它们.运算符是对一个,两个或三个操作数执行特定操作并返回结果的特殊符号.下表列出了Java中的运算符: 表格中的运算符是按照从上 ...