Description

Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the i-th row and j-th column. Initially we have A[i, j] = 0 (1 <= i, j <= N).

We can change the matrix in the following way. Given a rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2), we change all the elements in the rectangle by using "not" operation (if it is a '0' then change it into '1' otherwise change it into '0'). To maintain the information of the matrix, you are asked to write a program to receive and execute two kinds of instructions.

1. C x1 y1 x2 y2 (1 <= x1 <= x2 <= n, 1 <= y1 <= y2 <= n) changes the matrix by using the rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2). 
2. Q x y (1 <= x, y <= n) querys A[x, y]. 

Input

The first line of the input is an integer X (X <= 10) representing the number of test cases. The following X blocks each represents a test case.

The first line of each block contains two numbers N and T (2 <= N <= 1000, 1 <= T <= 50000) representing the size of the matrix and the number of the instructions. The following T lines each represents an instruction having the format "Q x y" or "C x1 y1 x2 y2", which has been described above.

Output

For each querying output one line, which has an integer representing A[x, y].

There is a blank line between every two continuous test cases.

Sample Input

1
2 10
C 2 1 2 2
Q 2 2
C 2 1 2 1
Q 1 1
C 1 1 2 1
C 1 2 1 2
C 1 1 2 2
Q 1 1
C 1 1 2 1
Q 2 1

Sample Output

1
0
0
1

Source

POJ Monthly,Lou Tiancheng
【分析】
算是真正明白二维树状数组了。
维护的时候只要更改矩阵的四个端点就行了。呵呵呵..
 #include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <vector>
#include <utility>
#include <iomanip>
#include <string>
#include <cmath>
#include <map> const int MAXN = + ;
const int MAX = + ;
using namespace std;
int n, m;//m为操作次数
int C[MAXN][MAXN]; int lowbit(int x){return x&-x;}
/*int sum(int x, int y){
int cnt = 0, tmp;
while (x > 0){
tmp = y;
while (tmp > 0){
cnt += C[x][tmp];
tmp -= lowbit(tmp);
}
x -= lowbit(x);
}
return cnt;
}
void add(int x, int y, int val){
int tmp;
while (x <= 1000){
tmp = y;
while (tmp <= 1000){
C[x][tmp] += val;
tmp += lowbit(tmp);
}
x += lowbit(x);
}
return;
}*/
void add(int x,int y) {
int i,k;
for(i=x; i<=n; i+=lowbit(i))
for(k=y; k<=n; k+=lowbit(k))
C[i][k]++;
}
int sum(int x,int y) {
int i,k,cnt = ;
for(i=x; i>; i-=lowbit(i))
for(k=y; k>; k-=lowbit(k))
cnt += C[i][k];
return cnt;
} void work(){
scanf("%d%d", &n, &m);
for (int i = ; i <= m; i++){
char str[];
scanf("%s", str);
if (str[] == 'Q'){
int x, y;
scanf("%d%d", &x, &y);
//x++;y++;
printf("%d\n", sum(x, y)%);
}else if (str[] == 'C'){
int x1, y1, x2, y2;
scanf("%d%d%d%d", &x1, &y1, &x2, &y2);
x1++;y1++;x2++;y2++;
add(x2, y2);
add(x2, y1 - );
add(x1 - , y2);
add(x1 - , y1 - );
}
}
} int main(){
int T;
#ifdef LOCAL
freopen("data.txt", "r", stdin);
freopen("out.txt", "w", stdout);
#endif
scanf("%d", &T);
while (T--){
memset(C, , sizeof(C));
work();
printf("\n");
}
return ;
}

【POJ2155】【二维树状数组】Matrix的更多相关文章

  1. poj2155二维树状数组

    Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the i-th row an ...

  2. POJ2155(二维树状数组)

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 17226   Accepted: 6461 Descripti ...

  3. poj2155二维树状数组区间更新

    垃圾poj又交不上题了,也不知道自己写的对不对 /* 给定一个矩阵,初始化为0:两种操作 第一种把一块子矩阵里的值翻转:0->1,1->0 第二种询问某个单元的值 直接累计单元格被覆盖的次 ...

  4. [poj2155]Matrix(二维树状数组)

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 25004   Accepted: 9261 Descripti ...

  5. 【poj2155】Matrix(二维树状数组区间更新+单点查询)

    Description Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the ...

  6. POJ2155 Matrix(二维树状数组||区间修改单点查询)

    Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the i-th row an ...

  7. [POJ2155]Matrix(二维树状数组)

    题目:http://poj.org/problem?id=2155 中文题意: 给你一个初始全部为0的n*n矩阵,有如下操作 1.C x1 y1 x2 y2 把矩形(x1,y1,x2,y2)上的数全部 ...

  8. POJ2155/LNSYOJ113 Matrix【二维树状数组+差分】【做题报告】

    这道题是一个二维树状数组,思路十分神奇,其实还是挺水的 题目描述 给定一个N∗NN∗N的矩阵AA,其中矩阵中的元素只有0或者1,其中A[i,j]A[i,j]表示矩阵的第i行和第j列(1≤i,j≤N)( ...

  9. POJ 2155 Matrix (二维树状数组)

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 17224   Accepted: 6460 Descripti ...

随机推荐

  1. octopress的一些总结

    1.编辑_config.yml 的description时,不能使用tab键 2.修改主题‘MediumFox’  description 和 文章展示的宽度,修改文件home_landing_row ...

  2. linux mono

    linux下.net环境; rpm -ivh http://dl.fedoraproject.org/pub/epel/6/x86_64/epel-release-6-8.noarch.rpm &am ...

  3. poj 1564 Sum It Up【dfs+去重】

    Sum It Up Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 6682   Accepted: 3475 Descrip ...

  4. HIBERNATE 01

    2017年1月8日 {LJ?Dragon}[标题]Hibernate基础知识简介_01 {LJ?Dragon}[Links]Hibernate注解详解 {LJ?Dragon}[Daily]特种部队2, ...

  5. 用户浏览器关闭cookie处理方法

    方法一: function getSessionId(){ var c_name = "jsessionid"; // alert("cookie:"+docu ...

  6. Android 动画之RotateAnimation应用详解

    android中提供了4中动画: AlphaAnimation 透明度动画效果 ScaleAnimation 缩放动画效果 TranslateAnimation 位移动画效果 RotateAnimat ...

  7. EXCEL 如何将多个工作表或工作簿合并到一个工作表

    在使用Excel 时,我们经常需要将多个工作表或工作簿合并到一个工作表中,这样我们就能快速地对数据进行分析和统计.对于一般用户而言,除了复制每个工作表后再粘贴,没有其他什么方法了.如果只是合并少数几个 ...

  8. JWS-webservice 与Axis2-webservice的高速实现

    在详细介绍这两种框架下的webservice之前,先跟大家交流一下SOA认识,也就是面向服务的体系结构.SOA所要解决的主要问题是在现有基础环境的前提下,通过对现有应用程序和基础结构进行又一次的组合以 ...

  9. 搬移到GitHub Page啦~

    GitHub: https://github.com/BOT-Man-JL/ Page: https://BOT-Man-JL.github.io/

  10. c++中返回对象与返回引用的区别

    这几天在做用C++做课程设计,对其返回对象的实现感到迷惑. 通过对汇编代码的分析,可以清楚的看到,直接返回引用和返回对象的区别到底是什么. 分析的程序如下 #include<cstdio> ...