Description

I have a set of super poker cards, consisting of an infinite number of cards. For each positive composite integer p, there
are exactly four cards whose value is p: Spade(S), Heart(H), Club(C) and
Diamond(D). There are no cards of other values.
By “composite integer”, we
mean integers that have more than 2 divisors. For example, 6 is a composite
integer, since it
has 4 divisors: 1, 2, 3, 6; 7 is not a composite number,
since 7 only has 2 divisors: 1 and 7. Note that 1 is not composite
(it has
only 1 divisor).
 
Given a positive integer n, how many ways can you pick
up exactly one card from each suit (i.e. exactly one spade card,
one heart
card, one club card and one diamond card), so that the card values sum to n? For
example, if n=24, one way is
4S+6H+4C+10D, shown below:

Unfortunately, some of the cards are lost,
but this makes the problem more interesting. To further make the problem even

more interesting (and challenging!), I’ll give you two other positive
integers a and b, and you need to find out all the
answers for n=a, n=a+1,
…, n=b.

Input

The input contains at most 25 test cases.
Each test case begins with 3 integers a, b and c, where c is the number of lost

cards. The next line contains c strings, representing the lost cards. Each
card is formatted as valueS, valueH, valueC or
valueD, where value is a
composite integer. No two lost cards are the same. The input is terminated by
a=b=c=0. There
will be at most one test case where a=1, b=50,000 and
c<=10,000. For other test cases, 1<=a<=b<=100,
0<=c<=10.

Output

For each test case, print b-a+1 integers, one
in each line. Since the numbers might be large, you should output each

integer modulo 1,000,000. Print a blank line after each test
case.

Sample Input

12 20 2
4S 6H
0 0 0

Sample Output

0
0
0
0
0
0
1

0
3

HINT

很简单的fft,看懂题面即可。

code:

 #include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<algorithm>
#define maxn 131075
#define pi 3.14159265358979323846
#define mod 1000000
using namespace std;
typedef long long int64;
char ch;
int l,r,m,n,x,len,tot,re[maxn],prime[maxn];
bool ok,bo[maxn];
void read(int &x){
for (ok=,ch=getchar();!isdigit(ch);ch=getchar()) if (ch=='-') ok=;
for (x=;isdigit(ch);x=x*+ch-'',ch=getchar());
if (ok) x=-x;
}
int rev(int v){
int t=;
for (int i=;i<len;i++) t<<=,t|=v&,v>>=;
return t;
}
struct comp{
double rea,ima;
void clear(){rea=ima=;}
comp operator +(const comp &x){return (comp){rea+x.rea,ima+x.ima};}
comp operator -(const comp &x){return (comp){rea-x.rea,ima-x.ima};}
comp operator *(const comp &x){return (comp){rea*x.rea-ima*x.ima,rea*x.ima+ima*x.rea};}
}a[maxn],b[maxn],c[maxn],d[maxn],Wn[][maxn],wn,w,t1,t2;
void fft(comp *a,int op){
for (int i=,t=re[i];i<n;i++,t=re[i]) if (i<t) swap(a[i],a[t]);
for (int s=;s<=n;s<<=){
wn=Wn[op][s];//cout<<wn.rea<<' '<<wn.ima<<endl;
for (int i=;i<n;i+=s){
w=(comp){,};
for (int j=i;j<i+(s>>);j++,w=w*wn){
t1=a[j],t2=w*a[j+(s>>)];
a[j]=t1+t2,a[j+(s>>)]=t1-t2;
}
}
}
if (op) for (int i=;i<n;i++) a[i].rea/=n,a[i].ima/=n;
}
void work(){
for (int i=;i<=r;i++) a[i].rea=(int64)round(a[i].rea)%mod,a[i].ima=;
for (int i=r+;i<n;i++) a[i].clear();
}
void init(){
for (int i=;i<maxn;i<<=) Wn[][i]=(comp){cos(*pi/i),sin(*pi/i)};
for (int i=;i<maxn;i<<=) Wn[][i]=(comp){cos(-*pi/i),sin(-*pi/i)};
for (int i=;i<=;i++){
if (!bo[i]) prime[++tot]=i;
for (int j=;j<=tot&&i*prime[j]<=;j++){
bo[i*prime[j]]=;
if (!(i%prime[j])) break;
}
}
}
int main(){
for (init(),read(l),read(r),read(m);l&&r;read(l),read(r),read(m)){
for (len=,n=;n<((r+)<<);len++,n<<=);
for (int i=;i<n;i++) re[i]=rev(i);
for (int i=;i<n;i++) a[i].clear(),b[i].clear(),c[i].clear(),d[i].clear();
for (int i=;i<r;i++) a[i].rea=b[i].rea=c[i].rea=d[i].rea=bo[i];
for (int i=;i<=m;i++){
read(x);
if (ch=='S') a[x].rea=;
else if (ch=='H') b[x].rea=;
else if (ch=='C') c[x].rea=;
else if (ch=='D') d[x].rea=;
}
fft(a,),fft(b,),fft(c,),fft(d,);
for (int i=;i<n;i++) a[i]=a[i]*b[i];
fft(a,),work(),fft(a,);
for (int i=;i<n;i++) a[i]=a[i]*c[i];
fft(a,),work(),fft(a,);
for (int i=;i<n;i++) a[i]=a[i]*d[i];
fft(a,),work();
for (int i=l;i<=r;i++) printf("%d\n",(int)a[i].rea);
puts("");
}
return ;
}

bzoj2487: Super Poker II的更多相关文章

  1. UVA - 12298 Super Poker II NTT

    UVA - 12298 Super Poker II NTT 链接 Vjudge 思路 暴力开个桶,然后统计,不过会T,用ntt或者fft,ntt用个大模数就行了,百度搜索"NTT大模数&q ...

  2. UVa12298 Super Poker II(母函数 + FFT)

    题目 Source http://acm.hust.edu.cn/vjudge/problem/23590 Description I have a set of super poker cards, ...

  3. Super Poker II UVA - 12298 FFT_生成函数

    Code: #include<bits/stdc++.h> #define maxn 1000000 #define ll long long #define double long do ...

  4. FFT(快速傅里叶变换):UVAoj 12298 - Super Poker II

    题目:就是现在有一堆扑克里面的牌有无数张, 每种合数的牌有4中不同花色各一张(0, 1都不是合数), 没有质数或者大小是0或者1的牌现在这堆牌中缺失了其中的 c 张牌, 告诉你a, b, c接下来c张 ...

  5. UVA12298 Super Poker II

    怎么又是没人写题解的UVA好题,个人感觉应该是生成函数的大板子题了. 直接做肯定爆炸,考虑来一发优化,我们记一个多项式,其中\(i\)次项的系数就表示对于\(i\)这个数有多少种表示方式. 那么很明显 ...

  6. UVA - 12298 Super Poker II (FFT+母函数)

    题意:有四种花色的牌,每种花色的牌中只能使用数值的约数个数大于2的牌.现在遗失了c张牌.每种花色选一张,求值在区间[a,b]的每个数值的选择方法有多少. 分析:约数个数大于2,即合数.所以先预处理出5 ...

  7. UVA 12298 Super Poker II (FFT)

    #include<cstdio> #include<cmath> #include<cstring> #include<algorithm> using ...

  8. 浅谈FFT(快速傅里叶变换)

    本文主要简单写写自己在算法竞赛中学习FFT的经历以及一些自己的理解和想法. FFT的介绍以及入门就不赘述了,网上有许多相关的资料,入门的话推荐这篇博客:FFT(最详细最通俗的入门手册),里面介绍得很详 ...

  9. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

随机推荐

  1. [Locked] Shortest Word Distance I & II & III

    Shortest Word Distance Given a list of words and two words word1 and word2, return the shortest dist ...

  2. Postman 安装 & 资料

    安装 下载地址: http://chromecj.com/web-development/2014-09/60/download.html 怎么在谷歌浏览器中安装.crx扩展名的离线Chrome插件? ...

  3. Linux 下让进程在后台可靠运行的几种方法

    想让进程在断开连接后依然保持运行?如果该进程已经开始运行了该如何补救? 如果有大量这类需求如何简化操作? 我们经常会碰到这样的问题,用 telnet/ssh 登录了远程的 Linux 服务器,运行了一 ...

  4. JQuery实现悬浮工具条

    实现效果如下 html代码 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http ...

  5. 通配符的匹配很全面, 但无法找到元素 'cache:advice' 的声明

    EB-INF\classes\spring-jdbc.xml] is invalid; nested exception is org.xml.sax.SAXParseException; lineN ...

  6. 1002 A + B Problem II [ACM刷题]

    这一段时间一直都在刷OJ,这里建一个博客合集,用以记录和分享算法学习的进程. github传送门:https://github.com/haoyuanliu/Online_Judge/tree/mas ...

  7. mongoDb 给表添加+ 删除字段

    1 .添加一个字段.  url 代表表名 , 添加字段 content. 字符串类型. db.url.update({}, {$set: {content:""}}, {multi ...

  8. 最蛋疼的bug:读取图片缩略图(一定要在相冊查看下形成缓存)

    近期的一个连接服务端的应用.须要读取图片,一般供用户公布商品选择上传图片.初始的图片列表应该是缩略图.仅仅有确定了,才上传原图,OK不多说上代码 package edu.buaa.erhuo; imp ...

  9. Android 图片选择器

    图片选择器,遍历系统所有图片并显示,点击查看大图,长按选中,并将结果返回 字体颜色res/color建立text_selecor.xml <selector xmlns:android=&quo ...

  10. 严苛模式(StrictMode)

    Android 2.3提供一个称为严苛模式(StrictMode)的调试特性,Google称该特性已经使数百个Android上的Google应用程序受益.那它都做什么呢?它将报告与线程及虚拟机相关的策 ...