bzoj2487: Super Poker II
Description
I have a set of super poker cards, consisting of an infinite number of cards. For each positive composite integer p, there
are exactly four cards whose value is p: Spade(S), Heart(H), Club(C) and
Diamond(D). There are no cards of other values.
By “composite integer”, we
mean integers that have more than 2 divisors. For example, 6 is a composite
integer, since it
has 4 divisors: 1, 2, 3, 6; 7 is not a composite number,
since 7 only has 2 divisors: 1 and 7. Note that 1 is not composite
(it has
only 1 divisor).
Given a positive integer n, how many ways can you pick
up exactly one card from each suit (i.e. exactly one spade card,
one heart
card, one club card and one diamond card), so that the card values sum to n? For
example, if n=24, one way is
4S+6H+4C+10D, shown below:

Unfortunately, some of the cards are lost,
but this makes the problem more interesting. To further make the problem even
more interesting (and challenging!), I’ll give you two other positive
integers a and b, and you need to find out all the
answers for n=a, n=a+1,
…, n=b.
Input
The input contains at most 25 test cases.
Each test case begins with 3 integers a, b and c, where c is the number of lost
cards. The next line contains c strings, representing the lost cards. Each
card is formatted as valueS, valueH, valueC or
valueD, where value is a
composite integer. No two lost cards are the same. The input is terminated by
a=b=c=0. There
will be at most one test case where a=1, b=50,000 and
c<=10,000. For other test cases, 1<=a<=b<=100,
0<=c<=10.
Output
For each test case, print b-a+1 integers, one
in each line. Since the numbers might be large, you should output each
integer modulo 1,000,000. Print a blank line after each test
case.
Sample Input
4S 6H
0 0 0
Sample Output
0
0
0
0
0
1
0
3
HINT
很简单的fft,看懂题面即可。
code:
#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<algorithm>
#define maxn 131075
#define pi 3.14159265358979323846
#define mod 1000000
using namespace std;
typedef long long int64;
char ch;
int l,r,m,n,x,len,tot,re[maxn],prime[maxn];
bool ok,bo[maxn];
void read(int &x){
for (ok=,ch=getchar();!isdigit(ch);ch=getchar()) if (ch=='-') ok=;
for (x=;isdigit(ch);x=x*+ch-'',ch=getchar());
if (ok) x=-x;
}
int rev(int v){
int t=;
for (int i=;i<len;i++) t<<=,t|=v&,v>>=;
return t;
}
struct comp{
double rea,ima;
void clear(){rea=ima=;}
comp operator +(const comp &x){return (comp){rea+x.rea,ima+x.ima};}
comp operator -(const comp &x){return (comp){rea-x.rea,ima-x.ima};}
comp operator *(const comp &x){return (comp){rea*x.rea-ima*x.ima,rea*x.ima+ima*x.rea};}
}a[maxn],b[maxn],c[maxn],d[maxn],Wn[][maxn],wn,w,t1,t2;
void fft(comp *a,int op){
for (int i=,t=re[i];i<n;i++,t=re[i]) if (i<t) swap(a[i],a[t]);
for (int s=;s<=n;s<<=){
wn=Wn[op][s];//cout<<wn.rea<<' '<<wn.ima<<endl;
for (int i=;i<n;i+=s){
w=(comp){,};
for (int j=i;j<i+(s>>);j++,w=w*wn){
t1=a[j],t2=w*a[j+(s>>)];
a[j]=t1+t2,a[j+(s>>)]=t1-t2;
}
}
}
if (op) for (int i=;i<n;i++) a[i].rea/=n,a[i].ima/=n;
}
void work(){
for (int i=;i<=r;i++) a[i].rea=(int64)round(a[i].rea)%mod,a[i].ima=;
for (int i=r+;i<n;i++) a[i].clear();
}
void init(){
for (int i=;i<maxn;i<<=) Wn[][i]=(comp){cos(*pi/i),sin(*pi/i)};
for (int i=;i<maxn;i<<=) Wn[][i]=(comp){cos(-*pi/i),sin(-*pi/i)};
for (int i=;i<=;i++){
if (!bo[i]) prime[++tot]=i;
for (int j=;j<=tot&&i*prime[j]<=;j++){
bo[i*prime[j]]=;
if (!(i%prime[j])) break;
}
}
}
int main(){
for (init(),read(l),read(r),read(m);l&&r;read(l),read(r),read(m)){
for (len=,n=;n<((r+)<<);len++,n<<=);
for (int i=;i<n;i++) re[i]=rev(i);
for (int i=;i<n;i++) a[i].clear(),b[i].clear(),c[i].clear(),d[i].clear();
for (int i=;i<r;i++) a[i].rea=b[i].rea=c[i].rea=d[i].rea=bo[i];
for (int i=;i<=m;i++){
read(x);
if (ch=='S') a[x].rea=;
else if (ch=='H') b[x].rea=;
else if (ch=='C') c[x].rea=;
else if (ch=='D') d[x].rea=;
}
fft(a,),fft(b,),fft(c,),fft(d,);
for (int i=;i<n;i++) a[i]=a[i]*b[i];
fft(a,),work(),fft(a,);
for (int i=;i<n;i++) a[i]=a[i]*c[i];
fft(a,),work(),fft(a,);
for (int i=;i<n;i++) a[i]=a[i]*d[i];
fft(a,),work();
for (int i=l;i<=r;i++) printf("%d\n",(int)a[i].rea);
puts("");
}
return ;
}
bzoj2487: Super Poker II的更多相关文章
- UVA - 12298 Super Poker II NTT
UVA - 12298 Super Poker II NTT 链接 Vjudge 思路 暴力开个桶,然后统计,不过会T,用ntt或者fft,ntt用个大模数就行了,百度搜索"NTT大模数&q ...
- UVa12298 Super Poker II(母函数 + FFT)
题目 Source http://acm.hust.edu.cn/vjudge/problem/23590 Description I have a set of super poker cards, ...
- Super Poker II UVA - 12298 FFT_生成函数
Code: #include<bits/stdc++.h> #define maxn 1000000 #define ll long long #define double long do ...
- FFT(快速傅里叶变换):UVAoj 12298 - Super Poker II
题目:就是现在有一堆扑克里面的牌有无数张, 每种合数的牌有4中不同花色各一张(0, 1都不是合数), 没有质数或者大小是0或者1的牌现在这堆牌中缺失了其中的 c 张牌, 告诉你a, b, c接下来c张 ...
- UVA12298 Super Poker II
怎么又是没人写题解的UVA好题,个人感觉应该是生成函数的大板子题了. 直接做肯定爆炸,考虑来一发优化,我们记一个多项式,其中\(i\)次项的系数就表示对于\(i\)这个数有多少种表示方式. 那么很明显 ...
- UVA - 12298 Super Poker II (FFT+母函数)
题意:有四种花色的牌,每种花色的牌中只能使用数值的约数个数大于2的牌.现在遗失了c张牌.每种花色选一张,求值在区间[a,b]的每个数值的选择方法有多少. 分析:约数个数大于2,即合数.所以先预处理出5 ...
- UVA 12298 Super Poker II (FFT)
#include<cstdio> #include<cmath> #include<cstring> #include<algorithm> using ...
- 浅谈FFT(快速傅里叶变换)
本文主要简单写写自己在算法竞赛中学习FFT的经历以及一些自己的理解和想法. FFT的介绍以及入门就不赘述了,网上有许多相关的资料,入门的话推荐这篇博客:FFT(最详细最通俗的入门手册),里面介绍得很详 ...
- bzoj AC倒序
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...
随机推荐
- poj 1269 水题
题目链接:http://poj.org/problem?id=1269 #include<cstdio> #include<cstring> #include<cmath ...
- 使用Ant自动化发布web工程
通常在web应用程序需要上线或测试时通常需要部署到类似于tomcat.jboss.weblogic或webspare这些web服务器中,为避免手动部署带来的操作繁琐.易出错等问题,这里使用ant进行标 ...
- 你真正的了解Ajax?Ajax技术简述
Ajax技术是目前在浏览器中通过JavaScript脚本可以使用的所有技术的集合.Ajax并没有创造出某种具体的新技术,它所使用的大多数技术都是在很多年以前就已经存在了,然而Ajax以一种崭新的方式来 ...
- linux 挂载ISO
首先,将作为源的iso的挂载到系统上. 代码如下: mount -o loop /xxx/xxx.iso /mnt/iso/ 其中/mnt/iso是事先在本地建立的文件夹. 然后将文件iso.repo ...
- 1002 A + B Problem II [ACM刷题]
这一段时间一直都在刷OJ,这里建一个博客合集,用以记录和分享算法学习的进程. github传送门:https://github.com/haoyuanliu/Online_Judge/tree/mas ...
- jquery ajaxform上传文件返回不提示信息的问题
在使用jquery的ajaxform插件进行ajax提交表单并且上传文件的时候,返回类型datatype :json但是后台通过写出一个json对象后,在执行完以后没有进入success函数,而是直接 ...
- Android Rom修改
最近项目里要实现修改开机动画 屏蔽系统桌面等一些涉及到修改底层的功能 一开始研究了一番 心想着看来这是要定制系统 做rom开发了 所以就牛逼哄哄的跑去下源码 研究rom开发 后来发现这将是一个庞大的工 ...
- redis 记录
参考 : http://keenwon.com/1275.html http://blog.csdn.net/freebird_lb/article/details/7733970 http://w ...
- ios创建的sqlite数据库文件如何从ios模拟器中导出
为了验证数据库的结构,有的时候需要使用一些管理工具来直接查看sqlite数据库的内容,在windows下有sqlite3的专用工具下载,而在ios下也可以使用火狐浏览器的插件sqlitemanager ...
- 堆和栈 内存分配 heap stack
Java中的堆和栈 在[函数]中定义的一些[基本类型的变量]和[对象的引用变量]都是在函数的[栈内存]中分配的.当在一段代码块中定义一个变量时,java就在栈中为这个变量分配内存空间, ...