bzoj2818
我们先穷举素数p
然后令y>x 这样问题就是求这个gcd(x,y)=p (1<=x<y=n)
不难发现必须y=kp k∈N* 当y=p时,易知个数为φ(1)
当y=2p 个数为φ(2),……当k最大为[n/p]时,个数为φ([n/p])
这不就是求欧拉函数的前缀和
因此我们要用筛法把φ(1~n)求出来弄一下前缀和即可
var p:array[..] of longint;
f:array[..] of int64;
v:array[..] of boolean;
n,i,j,t:longint;
ans:int64; begin
readln(n);
fillchar(v,sizeof(v),false);
f[]:=;
for i:= to n do
begin
if not v[i] then
begin
inc(t);
p[t]:=i;
f[i]:=i-;
end;
for j:= to t do
if p[j]*i<=n then
begin
v[p[j]*i]:=true;
if i mod p[j]= then
begin
f[i*p[j]]:=f[i]*int64(p[j]);
break;
end
else f[i*p[j]]:=f[i]*int64(p[j]-);
end
else break;
end; for i:= to n do
f[i]:=f[i-]+f[i]; for i:= to t do
ans:=ans+(f[n div p[i]]-)*+; //注意x=y
writeln(ans);
end.
bzoj2818的更多相关文章
- 【BZOJ2818】Gcd(莫比乌斯反演)
[BZOJ2818]Gcd(莫比乌斯反演) 题面 Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的 数对(x,y)有多少对. Input 一个整数N Ou ...
- Luogu2257 YY的GCD/BZOJ2818 Gcd加强版(莫比乌斯反演+线性筛)
一通套路之后得到 求出中间那个函数的前缀和的话就可以整除分块了. 暴力求的话复杂度其实很优秀了,大约在n~nlogn之间. 不过可以线性筛做到严格线性.考虑其最小质因子,如果是平方因子那么只有其有贡献 ...
- GCD BZOJ2818 [省队互测] 数学
题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入输出样例 输入样例#1: 复制 4 ...
- 【bzoj2818】: Gcd 数论-欧拉函数
[bzoj2818]: Gcd 考虑素数p<=n gcd(xp,yp)=p 当 gcd(x,y)=1 xp,yp<=n满足条件 p对答案的贡献: 预处理前缀和就好了 /* http://w ...
- BZOJ2818 Gcd
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转 ...
- 【bzoj2818】 Gcd
http://www.lydsy.com/JudgeOnline/problem.php?id=2818 (题目链接) 题意 求给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数 ...
- 【BZOJ2818】Gcd 欧拉筛
Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Sample Input 4 Sam ...
- 【BZOJ-2818】Gcd 线性筛
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 3347 Solved: 1479[Submit][Status][Discuss ...
- BZOJ2818 欧拉函数
题意:求1--n中满足gcd(x,y)的值为质数的数对(x,y)的数目 ( (x,y)和(y,x)算两个 ) sol: 设p[i]是一个质数,那么以下两个命题是等价的: 1.gcd(x,y)=1 2. ...
- Bzoj-2818 Gcd 欧拉函数
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2818 题意:给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x ...
随机推荐
- 关于怎么将Quartus和Nios程序一起固化到FPGA里面
系统:win8.1 SDK:Quartus II 14.1 FPGA:Cyclone IV 1.将Quartus生成的.pof文件(配置Flash即可自动生成,这里不讨论),与Nios生成的.elf文 ...
- Markdown写接口文档,自动添加TOC
上回说到,用Impress.js代替PPT来做项目展示.这回换Markdown来做接口文档好了.(不敢说代替Word,只能说个人感觉更为方便)当然,还要辅之以Git,来方便版本管理. Markdown ...
- linux reboot命令
命令简介: 该命令用来重启Linux系统.相当于Windows系统中的restart命令. 命令语法: /sbin/reboot [-n] [-w] [-d] [-f] [-i] 或 reboot [ ...
- 手势交互之GestureOverlayView
一种用于手势输入的透明覆盖层,可以覆盖在其他空间的上方,也可包含在其他控件 android.gesture.GestureOverlayView 获得手势文件 需要用GesturesBuilder,如 ...
- 怎么捕获和记录SQL Server中发生的死锁
我们知道,可以使用SQL Server自带的Profiler工具来跟踪死锁信息.但这种方式有一个很大的敝端,就是消耗很大.据国外某大神测试,profiler甚至可以占到服 务器总带宽的35%,所以,在 ...
- 国际化 native2ascii用法
cmd下输入: native2ascii -encoding GBK(需要编译成哪种语言) (中文文件路劲) (英文文件路劲) 其他固定 例如 native2ascii -encoding GBK C ...
- IOS应用程序生命周期&启动周期函数
—程序的生命周期 a.程序的生命周期是指应用程序启动到应用程序结束整个阶段的全过程 b.每一个IOS应用程序都包含一个UIApplication对象,IOS系统通过该U ...
- ID选择器
在很多方面,ID选择器都类似于类选择符,但也有一些重要的区别: 1.为标签设置id="ID名称",而不是class="类名称". 2.ID选择符的前面是井号(# ...
- javascript基础学习(五)
javascript之函数 学习要点: 函数的介绍 函数的参数 函数的属性和方法 系统函数 一.函数的介绍 1.函数就是一段javascript代码.可以分为用户自定义函数和系统函数. 如果一个函 ...
- asp.net Handler中的IsReusable属性及在Handler中使用Session
大家在用HttpHandler的时候,一般都会有两个大的疑问(当然,前提是你有钻研精神的话,呵呵) 1. IsReusable到底什么意思? 老实说,这个属性很多人都感兴趣,但搞懂的人确实不多.MSD ...