Worker作为对于Spark集群的健壮运行起着举足轻重的作用,作为Master的奴隶,每15s向Master告诉自己还活着,一旦主人(Master》有了任务(Application),立马交给属于它的奴隶们(Workers),那么奴隶们就会数数自己有多少家当(比如内存、核数),量力而行地交给主人完成的任务,如果奴隶不量力而行在执行任务过程中不幸死了的话,作为主人的Master只会等待60s,如果奴隶在这生死攸关的紧要关头不理睬主人,那么主人只能认为它死了,那么就会把它抛弃了。下面,我们一起了解一下Worker究竟有哪些不为人知的故事。

1.家当(静态属性)

我们只列出一些重要的属性:
1.一个守护单线程的调度器用于在特殊的时间发送消息,执行的任务包括:向Master注册Worker信息、发送心跳信息、定期清理任务等。
  private val forwordMessageScheduler =
    ThreadUtils.newDaemonSingleThreadScheduledExecutor("worker-forward-message-scheduler")
2.一个独立的线程用于清理工作空间,执行任务:定期清理执行过程中创建的本地文件。
  private val cleanupThreadExecutor = ExecutionContext.fromExecutorService(
    ThreadUtils.newDaemonSingleThreadExecutor("worker-cleanup-thread"))
3.shuffle服务默认没有开启除非用户自己配置,之所以会开启外部的Shuffle服务,是为了避免Executor进程任务过重,导致不能为其他的Executor提供Shuffle数据,影响任务的执行。比如,如果使用YARN模式时,可以在yarn-site.xml文件中配置及其端口号,从而在NodeManger上开启Shuffle服务,减轻Executor的负担。
  private val shuffleService = new ExternalShuffleService(conf, securityMgr)
4.一个masters的线程池。因为master注册Worker是一个阻塞操作,所以这个线程池必须能同时创建"masterRpcAddresses.size"大小的线程,这样我们就能将worker注册到所有的master上。
private val registerMasterThreadPool = new ThreadPoolExecutor(
    0,
    masterRpcAddresses.size, // Make sure we can register with all masters at the same time
    60L, TimeUnit.SECONDS,
    new SynchronousQueue[Runnable](),
    ThreadUtils.namedThreadFactory("worker-register-master-threadpool"))

2.技能(方法)

由于Worker本质上是一个RpcEndpoint,所以我们按照它的声明周期进行介绍。
1.构造函数就是Worker默认的构造器
2.onStart方法


<code>
//worker的启动
  override def onStart() {
    assert(!registered)
    logInfo("Starting Spark worker %s:%d with %d cores, %s RAM".format(
      host, port, cores, Utils.megabytesToString(memory)))
    logInfo(s"Running Spark version ${org.apache.spark.SPARK_VERSION}")
    logInfo("Spark home: " + sparkHome)
    createWorkDir()
    //如果用户已经配置外部的Shuffle,那么就启动该服务
    shuffleService.startIfEnabled()
    //该WebUI只仅限于Standalone模式下
    webUi = new WorkerWebUI(this, workDir, webUiPort)
    webUi.bind()
    //将worker注册到master上,详情如下(1)
    registerWithMaster()
    metricsSystem.registerSource(workerSource)
    metricsSystem.start()
    //metricsSystem启动后,将worker的metrics的servlet handler添加到web ui
    metricsSystem.getServletHandlers.foreach(webUi.attachHandler)
  }
</code>


(1)将worker注册到master上的registerWithMaster()代码如下所示:


<code>
private def registerWithMaster() {
    //如果work与master可能多次失去连接,所以不要尝试太多次的注册
    registrationRetryTimer match {
      case None =>
        registered = false
        //将woker注册到所有的master上返回一个Future的数组,详情如下(2)
        registerMasterFutures = tryRegisterAllMasters()
        connectionAttemptCount = 0
        //一个单线程不定时向master发送注册信息
        registrationRetryTimer = Some(forwordMessageScheduler.scheduleAtFixedRate(
          new Runnable {
            override def run(): Unit = Utils.tryLogNonFatalError {
              Option(self).foreach(_.send(ReregisterWithMaster))
            }
          },
          INITIAL_REGISTRATION_RETRY_INTERVAL_SECONDS,
          INITIAL_REGISTRATION_RETRY_INTERVAL_SECONDS,
          TimeUnit.SECONDS))
      case Some(_) =>
        logInfo("Not spawning another attempt to register with the master, since there is an" +
          " attempt scheduled already.")
    }
  }
</code>


(2)tryRegisterAllMasters代码如下:


<code>
//将worker注册到所有的master上面
  private def tryRegisterAllMasters(): Array[JFuture[_]] = {
    masterRpcAddresses.map { masterAddress =>
      registerMasterThreadPool.submit(new Runnable {
        override def run(): Unit = {
          try {
            logInfo("Connecting to master " + masterAddress + "...")
            //在Client的Rpc中根据master的systemname、address、endpointname返回一个master的远程引用
            val masterEndpoint =
              rpcEnv.setupEndpointRef(Master.SYSTEM_NAME, masterAddress, Master.ENDPOINT_NAME)
            //调用master的远程引用将worker注册到master上
            masterEndpoint.send(RegisterWorker(
              workerId, host, port, self, cores, memory, webUi.boundPort, publicAddress))
          } catch {
            case ie: InterruptedException => // Cancelled
            case NonFatal(e) => logWarning(s"Failed to connect to master $masterAddress", e)
          }
        }
      })
    }
  }
</code>


3.onStop()方法,把关于Worker的一切都停止掉,比如线程、executors、drivers、shuffleService等


<code>
override def onStop() {
    cleanupThreadExecutor.shutdownNow()
    metricsSystem.report()
    cancelLastRegistrationRetry()
    forwordMessageScheduler.shutdownNow()
    registerMasterThreadPool.shutdownNow()
    executors.values.foreach(_.kill())
    drivers.values.foreach(_.kill())
    shuffleService.stop()
    webUi.stop()
    metricsSystem.stop()
  }
</code>


还有一个很重要的receive方法,都放到这儿可能有点拥挤,留到下一篇吧。

【原】 Spark中Worker源码分析(一)的更多相关文章

  1. 【原】 Spark中Worker源码分析(二)

    继续前一篇的内容.前一篇内容为: Spark中Worker源码分析(一)http://www.cnblogs.com/yourarebest/p/5300202.html 4.receive方法, r ...

  2. 【原】Spark中Client源码分析(二)

    继续前一篇的内容.前一篇内容为: Spark中Client源码分析(一)http://www.cnblogs.com/yourarebest/p/5313006.html DriverClient中的 ...

  3. 【原】Spark中Master源码分析(二)

    继续上一篇的内容.上一篇的内容为: Spark中Master源码分析(一) http://www.cnblogs.com/yourarebest/p/5312965.html 4.receive方法, ...

  4. 【原】Spark中Master源码分析(一)

    Master作为集群的Manager,对于集群的健壮运行发挥着十分重要的作用.下面,我们一起了解一下Master是听从Client(Leader)的号召,如何管理好Worker的吧. 1.家当(静态属 ...

  5. Spark中决策树源码分析

    1.Example 使用Spark MLlib中决策树分类器API,训练出一个决策树模型,使用Python开发. """ Decision Tree Classifica ...

  6. 【原】Spark中Client源码分析(一)

    在Spark Standalone中我们所谓的Client,它的任务其实是由AppClient和DriverClient共同完成的.AppClient是一个允许app(Client)和Spark集群通 ...

  7. Spark Scheduler模块源码分析之DAGScheduler

    本文主要结合Spark-1.6.0的源码,对Spark中任务调度模块的执行过程进行分析.Spark Application在遇到Action操作时才会真正的提交任务并进行计算.这时Spark会根据Ac ...

  8. Spark RPC框架源码分析(三)Spark心跳机制分析

    一.Spark心跳概述 前面两节中介绍了Spark RPC的基本知识,以及深入剖析了Spark RPC中一些源码的实现流程. 具体可以看这里: Spark RPC框架源码分析(二)运行时序 Spark ...

  9. Spark Scheduler模块源码分析之TaskScheduler和SchedulerBackend

    本文是Scheduler模块源码分析的第二篇,第一篇Spark Scheduler模块源码分析之DAGScheduler主要分析了DAGScheduler.本文接下来结合Spark-1.6.0的源码继 ...

随机推荐

  1. MySQL基础学习之触发器

    查看触发器 SHOW TRIGGER\G 创建触发器 CREATE TRIGGER 触发器名字 BEFORE/AFTER DELETE ON 表名 FOR EACH ROW INSERT INTO 表 ...

  2. Linux文件保护禁止修改、删除、移动文件等,使用chattr +i保护

    不让用户修改.删除文件等,使用 chattr保护 chattr命令的用法:chattr [ -RV ] [ -v version ] [ mode ] files… 最关键的是在[mode]部分,[m ...

  3. phpcms v9后台多表查询分页代码

    phpcms v9里面自带的listinfo分页函数蛮好用的,可惜啊.不支持多表查询并分页. 看了一下前台模板层支持get标签,支持多表查询,支持分页.刚好可以把这个功能搬到后台来使用. 我们现在对g ...

  4. TortoiseSVN文件夹及文件图标不显示解决方法 [转]

    由于自己的电脑是win7(64位)的,系统安装TortoiseSVN之后,其他的功能都能正常的使用,但是就是文件夹或文件夹的左下角就是不显示图 标,这个问题前一段时间就遇到了(那个时候没找到合适的答案 ...

  5. ubuntu 12 64 桌面版Oracle11g 安装

    1.Creating the Oracle Inventory Group sudo groupadd oinstall sudo groupadd dba sudo groupadd oper su ...

  6. mysql 远程连接 2003 Can't connect to MySQL server (10060)

    mysql server 端的端口被防火墙挡出,没有开放

  7. 【GPS】 数据围栏

    1.记录gps信息,定位类型  gps  agps ,偏移量 2.根据id检索用户 gps 历史记录 3.创建围栏 4.围栏内用户检索(先实现 圆形和矩形) 5.判断一个点是否进出围栏 应用场景: o ...

  8. repo manifest xml 文件修改后提交命令

    git push origin dev(本地分支):refs/for/tv/Internal_Jb910_develop_t

  9. 洛谷1890 gcd区间

    题目描述 给定一行n个正整数a[1]..a[n].m次询问,每次询问给定一个区间[L,R],输出a[L]..a[R]的最大公因数. 输入输出格式 输入格式: 第一行两个整数n,m.第二行n个整数表示a ...

  10. Automotive Security的一些资料和心得(5):Privacy

    1. Introduction 1.1 "Customers own their data and we can be no more than the trsted stewards of ...