Alex decided to try his luck in TV shows. He once went to the quiz named "What's That Word?!". After perfectly answering the questions "How is a pseudonym commonly referred to in the Internet?" ("Um... a nick?"), "After which famous inventor we name the unit of the magnetic field strength?" ("Um... Nikola Tesla?") and "Which rock band performs "How You Remind Me"?" ("Um... Nickelback?"), he decided to apply to a little bit more difficult TV show: "What's in This Multiset?!".

The rules of this TV show are as follows: there are n

multisets numbered from 1 to n. Each of them is initially empty. Then, q

events happen; each of them is in one of the four possible types:

  • 1 x v — set the x

-th multiset to a singleton {v}

  • 2 x y z — set the x

-th multiset to a union of the y-th and the z-th multiset. For example: {1,3}∪{1,4,4}={1,1,3,4,4}

  • 3 x y z — set the x

-th multiset to a product of the y-th and the z-th multiset. The product A×B of two multisets A, B is defined as {gcd(a,b)∣a∈A,b∈B}, where gcd(p,q) is the greatest common divisor of p and q. For example: {2,2,3}×{1,4,6}={1,2,2,1,2,2,1,1,3}

  • 4 x v — the participant is asked how many times number v

occurs in the x-th multiset. As the quiz turned out to be too hard in the past, participants should now give the answers modulo 2

  • only.

Note, that x

, y and z described above are not necessarily different. In events of types 2 and 3

, the sum or the product is computed first, and then the assignment is performed.

Alex is confused by the complicated rules of the show. Can you help him answer the requests of the 4

-th type?

Input

The first line contains two integers n

and q (1≤n≤105, 1≤q≤106

) — the number of multisets and the number of events.

Each of the following q

lines describes next event in the format given in statement. It's guaranteed that 1≤x,y,z≤n and 1≤v≤7000

always holds.

It's guaranteed that there will be at least one event of the 4

-th type.

Output

Print a string which consists of digits 0

and 1 only, and has length equal to the number of events of the 4-th type. The i-th digit of the string should be equal to the answer for the i-th query of the 4

-th type.

Example

Input
4 13
1 1 1
1 2 4
1 3 6
4 4 4
1 4 4
2 2 1 2
2 3 3 4
4 4 4
3 2 2 3
4 2 1
4 2 2
4 2 3
4 2 4
Output
010101

Note

Here is how the multisets look in the example test after each of the events; i

is the number of queries processed so far:

题意:

n个可重集,有Q次操作
   1 u v 表示将第u个可重集的元素置为1个v
   2 u a b 表示将第u个可重集置为第a个可重集和第b个可重集的并集
   3 u a b 表示将第u个可重集置为第a个可重集的每个元素和第b个可重集的每个元素的gcd的并集
   4 u v 表示求在第u个可重集中元素v的出现次数是奇数还是偶数
   n<=1e5 Q<=1e6 1<=v<=7000

思路:由于是只要求奇数还是偶数,我们整个过程只需要保存0和1即可,我们用莫比乌斯来求是否存在一个gcd,即保存当前集合是因子的奇偶性。那么对于2和3,我们可以直接操作(分别是^ &)了。

假设我们知道了因子的数量的奇偶性,假设保存在s[]里面。  vis[gcd]=mu(d/gcd)*s[d];所以对于每个gcd,我们预处理出mu(d/gcd)!=0的位置d,保存到b[]里面。

由于只求奇偶,1和-1的效果等效,结果和s[x]*b[y]的1的数量奇偶相同;

#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
const int maxn=;
const int maxm=;
bitset<maxm>s[maxn],b[maxm];
int mu[maxm],p[maxm],cnt;bool vis[maxm];
vector<int>G[maxm];
void init()
{
mu[]=;
rep(i,,maxm-){
if(!vis[i]) p[++cnt]=i,mu[i]=-;
rep(j,,cnt){
if(i*p[j]>=maxm) break;
vis[i*p[j]]=;
if(!(i%p[j])) {mu[i*p[j]]=; break;}
mu[i*p[j]]=-mu[i];
}
}
rep(i,,maxm-)
for(int j=i,k=;j<=maxm-;j+=i,k++){
G[j].push_back(i);
if(mu[k]!=) b[i][j]=;
}
}
int main()
{
int N,M,opt,x,y,z;
init();
scanf("%d%d",&N,&M);
while(M--){
scanf("%d",&opt);
if(opt==){
scanf("%d%d",&x,&y);
s[x].reset();
rep(i,,G[y].size()-)
s[x][G[y][i]]=s[x][G[y][i]]^;
}
else if(opt==){
scanf("%d%d%d",&x,&y,&z);
s[x]=s[y]^s[z];
}
else if(opt==){
scanf("%d%d%d",&x,&y,&z);
s[x]=s[y]&s[z];
}
else {
scanf("%d%d",&x,&y);
if((s[x]&b[y]).count()&) putchar('');
else putchar('');
}
}
return ;
}

CodeForces - 1097F:Alex and a TV Show (bitset & 莫比乌斯容斥)的更多相关文章

  1. Codeforces 1097F Alex and a TV Show (莫比乌斯反演)

    题意:有n个可重集合,有四种操作: 1:把一个集合设置为单个元素v. 2:两个集合求并集. 3:两个集合中的元素两两求gcd,然后这些gcd形成一个集合. 4:问某个可重复集合的元素v的个数取模2之后 ...

  2. Codeforces 1097F. Alex and a TV Show

    传送门 由于只要考虑 $\mod 2$ 意义下的答案,所以我们只要维护一堆的 $01$ 容易想到用 $bitset$ 瞎搞...,发现当复杂度 $qv/32$ 是可以过的... 一开始容易想到对每个集 ...

  3. Codeforces Round #330 (Div. 2) B. Pasha and Phone 容斥定理

    B. Pasha and Phone Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/595/pr ...

  4. Codeforces Round #258 (Div. 2) E. Devu and Flowers 容斥

    E. Devu and Flowers 题目连接: http://codeforces.com/contest/451/problem/E Description Devu wants to deco ...

  5. Codeforces 1097 Alex and a TV Show

    传送门 除了操作 \(3\) 都可以 \(bitset\) 现在要维护 \[C_i=\sum_{gcd(j,k)=i}A_jB_k\] 类比 \(FWT\),只要求出 \(A'_i=\sum_{i|d ...

  6. Codeforces Round #428 (Div. 2) D. Winter is here 容斥

    D. Winter is here 题目连接: http://codeforces.com/contest/839/problem/D Description Winter is here at th ...

  7. codeforces 342D Xenia and Dominoes(状压dp+容斥)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud D. Xenia and Dominoes Xenia likes puzzles ...

  8. CodeForces - 803F: Coprime Subsequences(莫比乌斯&容斥)

    Let's call a non-empty sequence of positive integers a1, a2... ak coprime if the greatest common div ...

  9. Codeforces Round #330 (Div. 2)B. Pasha and Phone 容斥

    B. Pasha and Phone   Pasha has recently bought a new phone jPager and started adding his friends' ph ...

随机推荐

  1. 【转】关于TCP 半连接队列和全连接队列

    摘要: # 关于TCP 半连接队列和全连接队列 > 最近碰到一个client端连接异常问题,然后定位分析并查阅各种资料文章,对TCP连接队列有个深入的理解 > > 查资料过程中发现没 ...

  2. 微信小程序FAQ

    1. 图片名注意大小写. 不然本地预览是可以看到的.上传后用手机就看不到了. 2. bindtap等事件传参 wxml <view id="tapTest" data-hi= ...

  3. view的focusable属性改变设置是否可获取光标

    注意图中我画的箭头,当时鼠标点击的黑色圈圈的位置,然后按钮出现了按下的效果(黄色的描边) 刚开始看到这种效果很是好奇,不知道是怎么实现的,后来仔细一想,应该是整个啤酒罐是一张图片(ImageView) ...

  4. react router @4 和 vue路由 详解(七)react路由守卫

    完整版:https://www.cnblogs.com/yangyangxxb/p/10066650.html 12.react路由守卫? a.在之前的版本中,React Router 也提供了类似的 ...

  5. laravel中的plicy授权方法:

    1.用命令新建policy: php artisan make:policy PostPolicy 2.在app/Policies/PostPolicy.php中添加处理文件的权限的方法: //修改: ...

  6. jsp 中文乱码

    解决jsp中文乱码问题的几个步骤 1 jsp页面设置        <%@ page language="java" contentType="text/html; ...

  7. HTML代码转换为JavaScript字符串

    我有时在工作中用到字符串拼接基本上来自于此,链接 http://www.css88.com/tool/html2js/

  8. java⑧

    1.switch的表达式取值: byte  short  int  char   Enum(枚举)    jdk1.7版本以上支持 String类型 2. break: 01.代表跳出当前方法体!跳出 ...

  9. java 实现简单的顺序队列

    package com.my; import java.util.Arrays; /** * 顺序队列 * @author wanjn * */ public class ArrayQueue { p ...

  10. 下载python中package的简便方法

    pip install -i https://pypi.tuna.tsinghua.edu.cn/simple xxx