Alex decided to try his luck in TV shows. He once went to the quiz named "What's That Word?!". After perfectly answering the questions "How is a pseudonym commonly referred to in the Internet?" ("Um... a nick?"), "After which famous inventor we name the unit of the magnetic field strength?" ("Um... Nikola Tesla?") and "Which rock band performs "How You Remind Me"?" ("Um... Nickelback?"), he decided to apply to a little bit more difficult TV show: "What's in This Multiset?!".

The rules of this TV show are as follows: there are n

multisets numbered from 1 to n. Each of them is initially empty. Then, q

events happen; each of them is in one of the four possible types:

  • 1 x v — set the x

-th multiset to a singleton {v}

  • 2 x y z — set the x

-th multiset to a union of the y-th and the z-th multiset. For example: {1,3}∪{1,4,4}={1,1,3,4,4}

  • 3 x y z — set the x

-th multiset to a product of the y-th and the z-th multiset. The product A×B of two multisets A, B is defined as {gcd(a,b)∣a∈A,b∈B}, where gcd(p,q) is the greatest common divisor of p and q. For example: {2,2,3}×{1,4,6}={1,2,2,1,2,2,1,1,3}

  • 4 x v — the participant is asked how many times number v

occurs in the x-th multiset. As the quiz turned out to be too hard in the past, participants should now give the answers modulo 2

  • only.

Note, that x

, y and z described above are not necessarily different. In events of types 2 and 3

, the sum or the product is computed first, and then the assignment is performed.

Alex is confused by the complicated rules of the show. Can you help him answer the requests of the 4

-th type?

Input

The first line contains two integers n

and q (1≤n≤105, 1≤q≤106

) — the number of multisets and the number of events.

Each of the following q

lines describes next event in the format given in statement. It's guaranteed that 1≤x,y,z≤n and 1≤v≤7000

always holds.

It's guaranteed that there will be at least one event of the 4

-th type.

Output

Print a string which consists of digits 0

and 1 only, and has length equal to the number of events of the 4-th type. The i-th digit of the string should be equal to the answer for the i-th query of the 4

-th type.

Example

Input
4 13
1 1 1
1 2 4
1 3 6
4 4 4
1 4 4
2 2 1 2
2 3 3 4
4 4 4
3 2 2 3
4 2 1
4 2 2
4 2 3
4 2 4
Output
010101

Note

Here is how the multisets look in the example test after each of the events; i

is the number of queries processed so far:

题意:

n个可重集,有Q次操作
   1 u v 表示将第u个可重集的元素置为1个v
   2 u a b 表示将第u个可重集置为第a个可重集和第b个可重集的并集
   3 u a b 表示将第u个可重集置为第a个可重集的每个元素和第b个可重集的每个元素的gcd的并集
   4 u v 表示求在第u个可重集中元素v的出现次数是奇数还是偶数
   n<=1e5 Q<=1e6 1<=v<=7000

思路:由于是只要求奇数还是偶数,我们整个过程只需要保存0和1即可,我们用莫比乌斯来求是否存在一个gcd,即保存当前集合是因子的奇偶性。那么对于2和3,我们可以直接操作(分别是^ &)了。

假设我们知道了因子的数量的奇偶性,假设保存在s[]里面。  vis[gcd]=mu(d/gcd)*s[d];所以对于每个gcd,我们预处理出mu(d/gcd)!=0的位置d,保存到b[]里面。

由于只求奇偶,1和-1的效果等效,结果和s[x]*b[y]的1的数量奇偶相同;

#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
const int maxn=;
const int maxm=;
bitset<maxm>s[maxn],b[maxm];
int mu[maxm],p[maxm],cnt;bool vis[maxm];
vector<int>G[maxm];
void init()
{
mu[]=;
rep(i,,maxm-){
if(!vis[i]) p[++cnt]=i,mu[i]=-;
rep(j,,cnt){
if(i*p[j]>=maxm) break;
vis[i*p[j]]=;
if(!(i%p[j])) {mu[i*p[j]]=; break;}
mu[i*p[j]]=-mu[i];
}
}
rep(i,,maxm-)
for(int j=i,k=;j<=maxm-;j+=i,k++){
G[j].push_back(i);
if(mu[k]!=) b[i][j]=;
}
}
int main()
{
int N,M,opt,x,y,z;
init();
scanf("%d%d",&N,&M);
while(M--){
scanf("%d",&opt);
if(opt==){
scanf("%d%d",&x,&y);
s[x].reset();
rep(i,,G[y].size()-)
s[x][G[y][i]]=s[x][G[y][i]]^;
}
else if(opt==){
scanf("%d%d%d",&x,&y,&z);
s[x]=s[y]^s[z];
}
else if(opt==){
scanf("%d%d%d",&x,&y,&z);
s[x]=s[y]&s[z];
}
else {
scanf("%d%d",&x,&y);
if((s[x]&b[y]).count()&) putchar('');
else putchar('');
}
}
return ;
}

CodeForces - 1097F:Alex and a TV Show (bitset & 莫比乌斯容斥)的更多相关文章

  1. Codeforces 1097F Alex and a TV Show (莫比乌斯反演)

    题意:有n个可重集合,有四种操作: 1:把一个集合设置为单个元素v. 2:两个集合求并集. 3:两个集合中的元素两两求gcd,然后这些gcd形成一个集合. 4:问某个可重复集合的元素v的个数取模2之后 ...

  2. Codeforces 1097F. Alex and a TV Show

    传送门 由于只要考虑 $\mod 2$ 意义下的答案,所以我们只要维护一堆的 $01$ 容易想到用 $bitset$ 瞎搞...,发现当复杂度 $qv/32$ 是可以过的... 一开始容易想到对每个集 ...

  3. Codeforces Round #330 (Div. 2) B. Pasha and Phone 容斥定理

    B. Pasha and Phone Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/595/pr ...

  4. Codeforces Round #258 (Div. 2) E. Devu and Flowers 容斥

    E. Devu and Flowers 题目连接: http://codeforces.com/contest/451/problem/E Description Devu wants to deco ...

  5. Codeforces 1097 Alex and a TV Show

    传送门 除了操作 \(3\) 都可以 \(bitset\) 现在要维护 \[C_i=\sum_{gcd(j,k)=i}A_jB_k\] 类比 \(FWT\),只要求出 \(A'_i=\sum_{i|d ...

  6. Codeforces Round #428 (Div. 2) D. Winter is here 容斥

    D. Winter is here 题目连接: http://codeforces.com/contest/839/problem/D Description Winter is here at th ...

  7. codeforces 342D Xenia and Dominoes(状压dp+容斥)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud D. Xenia and Dominoes Xenia likes puzzles ...

  8. CodeForces - 803F: Coprime Subsequences(莫比乌斯&容斥)

    Let's call a non-empty sequence of positive integers a1, a2... ak coprime if the greatest common div ...

  9. Codeforces Round #330 (Div. 2)B. Pasha and Phone 容斥

    B. Pasha and Phone   Pasha has recently bought a new phone jPager and started adding his friends' ph ...

随机推荐

  1. svn分支使用 SVN trunk(主线) branch(分支) tag(标记) 用法详解和详细操作步骤

    比较好的介绍了分支的创建和使用. 转:http://blog.csdn.net/vbirdbest/article/details/51122637

  2. ELementUI 树形控件tree 获取子节点同时获取半选择状态的父节点ID

    使用element-ui  tree树形控件的时候,在选择一个子节点后,使用getCheckedKeys 后,发现只能返回子节点的ID,但是其父节点ID没有返回. 解决办法有三种: 1.element ...

  3. error TS2304: Cannot find name 'Promise' && TS2307: Cannot find module '**'

    error TS2304: Cannot find name 'Promise' 解决方法:在编译选项中加入"target":"es6" { "ver ...

  4. Win10系列:VC++ Direct3D模板介绍1

    Visual Studio为开发Direct3D应用程序提供了便捷的模版,读者可以不必手动去新建Direct3D中所使用到的基础资源,而只需专注于图形的绘制.本小节主要为读者介绍这个模版中用于绘制图形 ...

  5. 验证码 kaptcha 参数详解

    Constant 描述 默认值 kaptcha.border 图片边框,合法值:yes , no yes kaptcha.border.color 边框颜色,合法值: r,g,b (and optio ...

  6. MATLAB 图像归一化

    matlab图像处理为什么要归一化和如何归一化一.为什么归一化1.   基本上归一化思想是利用图像的不变矩寻找一组参数使其能够消除其他变换函数对图像变换的影响.也就是转换成唯一的标准形式以抵抗仿射变换 ...

  7. Java并发编程_volatile关键字的用法(二)

    被volatile修饰的变量能够保证每个线程能够获取该变量的最新值,从而避免出现数据脏读的现象. 根据下面实例理解: package sync; public class VolatileTest e ...

  8. VSTO:使用C#开发Excel、Word【5】

    <Visual Studio Tools for Office: Using C# with Excel, Word, Outlook, and InfoPath >——By Eric C ...

  9. sass嵌套风格

    1.嵌套输出方式 nested Sass 提供了一种嵌套显示 CSS 文件的方式.例如 nav { ul { margin:; padding:; list-style: none; } li { d ...

  10. 5.2 C++重载操作符的优先级

    参考:http://www.weixueyuan.net/view/6380.html 总结: 重载操作符不能改变操作符的优先级和语法特性. 重载操作符不能改变操作符的优先级和语法特性.例如上一节复数 ...