CodeForces - 1097F:Alex and a TV Show (bitset & 莫比乌斯容斥)
Alex decided to try his luck in TV shows. He once went to the quiz named "What's That Word?!". After perfectly answering the questions "How is a pseudonym commonly referred to in the Internet?" ("Um... a nick?"), "After which famous inventor we name the unit of the magnetic field strength?" ("Um... Nikola Tesla?") and "Which rock band performs "How You Remind Me"?" ("Um... Nickelback?"), he decided to apply to a little bit more difficult TV show: "What's in This Multiset?!".
The rules of this TV show are as follows: there are n
multisets numbered from 1 to n. Each of them is initially empty. Then, q
events happen; each of them is in one of the four possible types:
- 1 x v — set the x
-th multiset to a singleton {v}
- 2 x y z — set the x
-th multiset to a union of the y-th and the z-th multiset. For example: {1,3}∪{1,4,4}={1,1,3,4,4}
- 3 x y z — set the x
-th multiset to a product of the y-th and the z-th multiset. The product A×B of two multisets A, B is defined as {gcd(a,b)∣a∈A,b∈B}, where gcd(p,q) is the greatest common divisor of p and q. For example: {2,2,3}×{1,4,6}={1,2,2,1,2,2,1,1,3}
- 4 x v — the participant is asked how many times number v
occurs in the x-th multiset. As the quiz turned out to be too hard in the past, participants should now give the answers modulo 2
- only.
Note, that x
, y and z described above are not necessarily different. In events of types 2 and 3
, the sum or the product is computed first, and then the assignment is performed.
Alex is confused by the complicated rules of the show. Can you help him answer the requests of the 4
-th type?
Input
The first line contains two integers n
and q (1≤n≤105, 1≤q≤106
) — the number of multisets and the number of events.
Each of the following q
lines describes next event in the format given in statement. It's guaranteed that 1≤x,y,z≤n and 1≤v≤7000
always holds.
It's guaranteed that there will be at least one event of the 4
-th type.
Output
Print a string which consists of digits 0
and 1 only, and has length equal to the number of events of the 4-th type. The i-th digit of the string should be equal to the answer for the i-th query of the 4
-th type.
Example
4 13
1 1 1
1 2 4
1 3 6
4 4 4
1 4 4
2 2 1 2
2 3 3 4
4 4 4
3 2 2 3
4 2 1
4 2 2
4 2 3
4 2 4
010101
Note
Here is how the multisets look in the example test after each of the events; i
is the number of queries processed so far:
题意:
n个可重集,有Q次操作
1 u v 表示将第u个可重集的元素置为1个v
2 u a b 表示将第u个可重集置为第a个可重集和第b个可重集的并集
3 u a b 表示将第u个可重集置为第a个可重集的每个元素和第b个可重集的每个元素的gcd的并集
4 u v 表示求在第u个可重集中元素v的出现次数是奇数还是偶数
n<=1e5 Q<=1e6 1<=v<=7000
思路:由于是只要求奇数还是偶数,我们整个过程只需要保存0和1即可,我们用莫比乌斯来求是否存在一个gcd,即保存当前集合是因子的奇偶性。那么对于2和3,我们可以直接操作(分别是^ &)了。
假设我们知道了因子的数量的奇偶性,假设保存在s[]里面。 vis[gcd]=mu(d/gcd)*s[d];所以对于每个gcd,我们预处理出mu(d/gcd)!=0的位置d,保存到b[]里面。
由于只求奇偶,1和-1的效果等效,结果和s[x]*b[y]的1的数量奇偶相同;
#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
const int maxn=;
const int maxm=;
bitset<maxm>s[maxn],b[maxm];
int mu[maxm],p[maxm],cnt;bool vis[maxm];
vector<int>G[maxm];
void init()
{
mu[]=;
rep(i,,maxm-){
if(!vis[i]) p[++cnt]=i,mu[i]=-;
rep(j,,cnt){
if(i*p[j]>=maxm) break;
vis[i*p[j]]=;
if(!(i%p[j])) {mu[i*p[j]]=; break;}
mu[i*p[j]]=-mu[i];
}
}
rep(i,,maxm-)
for(int j=i,k=;j<=maxm-;j+=i,k++){
G[j].push_back(i);
if(mu[k]!=) b[i][j]=;
}
}
int main()
{
int N,M,opt,x,y,z;
init();
scanf("%d%d",&N,&M);
while(M--){
scanf("%d",&opt);
if(opt==){
scanf("%d%d",&x,&y);
s[x].reset();
rep(i,,G[y].size()-)
s[x][G[y][i]]=s[x][G[y][i]]^;
}
else if(opt==){
scanf("%d%d%d",&x,&y,&z);
s[x]=s[y]^s[z];
}
else if(opt==){
scanf("%d%d%d",&x,&y,&z);
s[x]=s[y]&s[z];
}
else {
scanf("%d%d",&x,&y);
if((s[x]&b[y]).count()&) putchar('');
else putchar('');
}
}
return ;
}
CodeForces - 1097F:Alex and a TV Show (bitset & 莫比乌斯容斥)的更多相关文章
- Codeforces 1097F Alex and a TV Show (莫比乌斯反演)
题意:有n个可重集合,有四种操作: 1:把一个集合设置为单个元素v. 2:两个集合求并集. 3:两个集合中的元素两两求gcd,然后这些gcd形成一个集合. 4:问某个可重复集合的元素v的个数取模2之后 ...
- Codeforces 1097F. Alex and a TV Show
传送门 由于只要考虑 $\mod 2$ 意义下的答案,所以我们只要维护一堆的 $01$ 容易想到用 $bitset$ 瞎搞...,发现当复杂度 $qv/32$ 是可以过的... 一开始容易想到对每个集 ...
- Codeforces Round #330 (Div. 2) B. Pasha and Phone 容斥定理
B. Pasha and Phone Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/595/pr ...
- Codeforces Round #258 (Div. 2) E. Devu and Flowers 容斥
E. Devu and Flowers 题目连接: http://codeforces.com/contest/451/problem/E Description Devu wants to deco ...
- Codeforces 1097 Alex and a TV Show
传送门 除了操作 \(3\) 都可以 \(bitset\) 现在要维护 \[C_i=\sum_{gcd(j,k)=i}A_jB_k\] 类比 \(FWT\),只要求出 \(A'_i=\sum_{i|d ...
- Codeforces Round #428 (Div. 2) D. Winter is here 容斥
D. Winter is here 题目连接: http://codeforces.com/contest/839/problem/D Description Winter is here at th ...
- codeforces 342D Xenia and Dominoes(状压dp+容斥)
转载请注明出处: http://www.cnblogs.com/fraud/ ——by fraud D. Xenia and Dominoes Xenia likes puzzles ...
- CodeForces - 803F: Coprime Subsequences(莫比乌斯&容斥)
Let's call a non-empty sequence of positive integers a1, a2... ak coprime if the greatest common div ...
- Codeforces Round #330 (Div. 2)B. Pasha and Phone 容斥
B. Pasha and Phone Pasha has recently bought a new phone jPager and started adding his friends' ph ...
随机推荐
- MySql语句中Union和join的用法
Union UNION 操作符用于合并两个或多个 SELECT 语句的结果集. 请注意,UNION 内部的 SELECT 语句必须拥有相同数量的列.列也必须拥有相似的数据类型.同时,每条 SELECT ...
- 在用mybatis向MySQL数据库中插入时间时报错:Incorrect datetime value: '' for column '' at row 1
问题说明:使用的MySQL是5.1.37版本,用的mysql-connector-java-5.0.4.jar版本,在java文件中定义的字段是Date类型,MySQL中定义的字段类型是datetim ...
- SQLite 剖析
由于sqlite对多进程操作支持效果不太理想,在项目中,为了避免频繁读写 文件数据库带来的性能损耗,我们可以采用操作sqlite内存数据库,并将内存数据库定时同步到文件数据库中的方法. 实现思路如下: ...
- [IOS微信] Unicode码 转化为字符串
最近在研究IOS手机备份的数据,里面的微信数据中,每一个微信账号对应一个文件:mmsetting.archive 用来保存此账号的详细信息. 该文件是一个加强版的plist文件(此文件使用的是plis ...
- 逆袭之旅DAY16.东软实训.Oracle.修改用户
2018-07-12 15:49:51
- 1-4Controller之Middleware
1.注册中间件: 新建中间件文件:Activity <?php namespace App\Http\Middleware; use Closure; class Activity{ publi ...
- learning scala control statement
1 .if satement 与其它语言不同的是,scala if statement 返回的是一个值 scala> val a = if ( 6 > 0 ) 1 else -1a: In ...
- 一个canvas的demo
该demo放于tomcat下运行,否则出现跨域错误 <!DOCTYPE html> <html> <head> <meta charset="utf ...
- Python pycharm 引入需要使用的包
第一步 第二步 第三步
- c#7的新特性
1.out关键字 //可以直接声明使用 ",out int number); 2.元组 //有点类似匿名对象的样子 //用小括号包含变量,可以当做返回值,可以当做变量赋值等 //1.当做函数 ...