CodeForces - 1097F:Alex and a TV Show (bitset & 莫比乌斯容斥)
Alex decided to try his luck in TV shows. He once went to the quiz named "What's That Word?!". After perfectly answering the questions "How is a pseudonym commonly referred to in the Internet?" ("Um... a nick?"), "After which famous inventor we name the unit of the magnetic field strength?" ("Um... Nikola Tesla?") and "Which rock band performs "How You Remind Me"?" ("Um... Nickelback?"), he decided to apply to a little bit more difficult TV show: "What's in This Multiset?!".
The rules of this TV show are as follows: there are n
multisets numbered from 1 to n. Each of them is initially empty. Then, q
events happen; each of them is in one of the four possible types:
- 1 x v — set the x
-th multiset to a singleton {v}
- 2 x y z — set the x
-th multiset to a union of the y-th and the z-th multiset. For example: {1,3}∪{1,4,4}={1,1,3,4,4}
- 3 x y z — set the x
-th multiset to a product of the y-th and the z-th multiset. The product A×B of two multisets A, B is defined as {gcd(a,b)∣a∈A,b∈B}, where gcd(p,q) is the greatest common divisor of p and q. For example: {2,2,3}×{1,4,6}={1,2,2,1,2,2,1,1,3}
- 4 x v — the participant is asked how many times number v
occurs in the x-th multiset. As the quiz turned out to be too hard in the past, participants should now give the answers modulo 2
- only.
Note, that x
, y and z described above are not necessarily different. In events of types 2 and 3
, the sum or the product is computed first, and then the assignment is performed.
Alex is confused by the complicated rules of the show. Can you help him answer the requests of the 4
-th type?
Input
The first line contains two integers n
and q (1≤n≤105, 1≤q≤106
) — the number of multisets and the number of events.
Each of the following q
lines describes next event in the format given in statement. It's guaranteed that 1≤x,y,z≤n and 1≤v≤7000
always holds.
It's guaranteed that there will be at least one event of the 4
-th type.
Output
Print a string which consists of digits 0
and 1 only, and has length equal to the number of events of the 4-th type. The i-th digit of the string should be equal to the answer for the i-th query of the 4
-th type.
Example
4 13
1 1 1
1 2 4
1 3 6
4 4 4
1 4 4
2 2 1 2
2 3 3 4
4 4 4
3 2 2 3
4 2 1
4 2 2
4 2 3
4 2 4
010101
Note
Here is how the multisets look in the example test after each of the events; i
is the number of queries processed so far:
题意:
n个可重集,有Q次操作
1 u v 表示将第u个可重集的元素置为1个v
2 u a b 表示将第u个可重集置为第a个可重集和第b个可重集的并集
3 u a b 表示将第u个可重集置为第a个可重集的每个元素和第b个可重集的每个元素的gcd的并集
4 u v 表示求在第u个可重集中元素v的出现次数是奇数还是偶数
n<=1e5 Q<=1e6 1<=v<=7000
思路:由于是只要求奇数还是偶数,我们整个过程只需要保存0和1即可,我们用莫比乌斯来求是否存在一个gcd,即保存当前集合是因子的奇偶性。那么对于2和3,我们可以直接操作(分别是^ &)了。
假设我们知道了因子的数量的奇偶性,假设保存在s[]里面。 vis[gcd]=mu(d/gcd)*s[d];所以对于每个gcd,我们预处理出mu(d/gcd)!=0的位置d,保存到b[]里面。
由于只求奇偶,1和-1的效果等效,结果和s[x]*b[y]的1的数量奇偶相同;
#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
const int maxn=;
const int maxm=;
bitset<maxm>s[maxn],b[maxm];
int mu[maxm],p[maxm],cnt;bool vis[maxm];
vector<int>G[maxm];
void init()
{
mu[]=;
rep(i,,maxm-){
if(!vis[i]) p[++cnt]=i,mu[i]=-;
rep(j,,cnt){
if(i*p[j]>=maxm) break;
vis[i*p[j]]=;
if(!(i%p[j])) {mu[i*p[j]]=; break;}
mu[i*p[j]]=-mu[i];
}
}
rep(i,,maxm-)
for(int j=i,k=;j<=maxm-;j+=i,k++){
G[j].push_back(i);
if(mu[k]!=) b[i][j]=;
}
}
int main()
{
int N,M,opt,x,y,z;
init();
scanf("%d%d",&N,&M);
while(M--){
scanf("%d",&opt);
if(opt==){
scanf("%d%d",&x,&y);
s[x].reset();
rep(i,,G[y].size()-)
s[x][G[y][i]]=s[x][G[y][i]]^;
}
else if(opt==){
scanf("%d%d%d",&x,&y,&z);
s[x]=s[y]^s[z];
}
else if(opt==){
scanf("%d%d%d",&x,&y,&z);
s[x]=s[y]&s[z];
}
else {
scanf("%d%d",&x,&y);
if((s[x]&b[y]).count()&) putchar('');
else putchar('');
}
}
return ;
}
CodeForces - 1097F:Alex and a TV Show (bitset & 莫比乌斯容斥)的更多相关文章
- Codeforces 1097F Alex and a TV Show (莫比乌斯反演)
题意:有n个可重集合,有四种操作: 1:把一个集合设置为单个元素v. 2:两个集合求并集. 3:两个集合中的元素两两求gcd,然后这些gcd形成一个集合. 4:问某个可重复集合的元素v的个数取模2之后 ...
- Codeforces 1097F. Alex and a TV Show
传送门 由于只要考虑 $\mod 2$ 意义下的答案,所以我们只要维护一堆的 $01$ 容易想到用 $bitset$ 瞎搞...,发现当复杂度 $qv/32$ 是可以过的... 一开始容易想到对每个集 ...
- Codeforces Round #330 (Div. 2) B. Pasha and Phone 容斥定理
B. Pasha and Phone Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/595/pr ...
- Codeforces Round #258 (Div. 2) E. Devu and Flowers 容斥
E. Devu and Flowers 题目连接: http://codeforces.com/contest/451/problem/E Description Devu wants to deco ...
- Codeforces 1097 Alex and a TV Show
传送门 除了操作 \(3\) 都可以 \(bitset\) 现在要维护 \[C_i=\sum_{gcd(j,k)=i}A_jB_k\] 类比 \(FWT\),只要求出 \(A'_i=\sum_{i|d ...
- Codeforces Round #428 (Div. 2) D. Winter is here 容斥
D. Winter is here 题目连接: http://codeforces.com/contest/839/problem/D Description Winter is here at th ...
- codeforces 342D Xenia and Dominoes(状压dp+容斥)
转载请注明出处: http://www.cnblogs.com/fraud/ ——by fraud D. Xenia and Dominoes Xenia likes puzzles ...
- CodeForces - 803F: Coprime Subsequences(莫比乌斯&容斥)
Let's call a non-empty sequence of positive integers a1, a2... ak coprime if the greatest common div ...
- Codeforces Round #330 (Div. 2)B. Pasha and Phone 容斥
B. Pasha and Phone Pasha has recently bought a new phone jPager and started adding his friends' ph ...
随机推荐
- PyQt样式表设置QComboBox
self.comboBox_marital = QComboBox(self) mar_list_view = QListView() self.comboBox_marital.setView(ma ...
- jsp 内置对象(五)
1.Request对象 该对象封装了用户提交的信息,通过调用该对象相应的方法可以获取封装的信息,即使用该对象可以 获取用户提交的信息. 当Request对象获取客户提交的汉字字符时,会出现乱码问题,必 ...
- h5的坑
转自 http://www.mahaixiang.cn 解决各种坑 http://www.mahaixiang.cn/ydseo/1529.html
- ubuntu16.10安装搜狗输入法
一.搜狗输入法安装 1.首先到搜狗输入法官网下载搜狗输入法,下载的是个deb文件. 搜狗输入法Linux版下载地址:http://pinyin.sogou.com/linux/?r=pinyin 2. ...
- alpine linux docker 安装 lxml出错的解决办法。
我习惯在docker当中用alpine来部署服务. 最近在部署flask时使用了 tiangolo/uwsgi-nginx-flask:python3.6-alpine3.7 这个镜像 别人写好的fl ...
- [Leetcode 62]机器人走路Unique Path 动态规划
[题目] A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below) ...
- 深入理解java虚拟机---java虚拟机的发展史(四)
1.java虚拟机 A:java虚拟机有很多个版本,但是我们经常使用的是sun公司的HotSpot,可以通过以下命令获取java虚拟机版本 B:JAVA虚拟机分类: 1.Sun Class VM 2. ...
- 基于session做的权限控制
一直听说做权限将登陆信息放在session中,实际也说不太出个所以然来,幸运在工作当中接触到了对应的代码的copy. 实现思路: 类似于粗粒度的权限控制 将权限控制的文件按包分隔好,对应的url前缀也 ...
- Codeforces Round #212 (Div. 2) C. Insertion Sort
C. Insertion Sort Petya is a beginner programmer. He has already mastered the basics of the C++ lang ...
- 软件工程结对作业01 psp表格