八皇后问题动态演示_Qt5实现


//核心代码如下
//Queen--放置皇后 #include "queue.h" queue::queue()
{
const int maxn = *;
this->QN = ;
this->board = new bool[maxn];
for (int i = ; i < maxn; i++) {
this->board[i] = false;
}
this->judgeRecursion = true;
this->count = ;
} queue::queue(int N)
{
const int maxn = ;
if (N > || N < )
this->QN = ; //如果不合法就正规化棋盘
else
this->QN = N;
this->board = new bool[maxn];
for (int i = ; i < maxn; ++i) //初始化棋盘,未放置棋子的棋盘设置为false
this->board[i] = false;
this->judgeRecursion = true;
this->count = ;
} bool queue::available (const int Crow, const int Ccol) const //当前行,当前列
{
for (int hor = ; hor < Crow; ++hor) {
//纵向查找
if (board[hor * QN + Ccol]) //已经放置皇后的棋盘处为true
return false; //则返回false--放置不合法
}
int obli = Crow, oblj = Ccol;
while (obli > && oblj > ) {
if (board[(--obli) * QN + (--oblj)])
return false; //左斜上查找
}
obli = Crow, oblj = Ccol;
while (obli > && oblj < QN - ) {
if (board[(--obli) * QN + (++oblj)])
return false; //右斜上查找
}
return true; //都没有,则该位置可以放置皇后
} //打印棋盘
void queue::show (bool *Q)
{
const int maxn = ;
for (int i = ; i < maxn; i++)
Q[i] = this->board[i];
} //重新初始化棋盘
void queue::reset ()
{
const int maxn = ;
for (int i = ; i < maxn; i++)
this->board[i] = false;
this->judgeRecursion = true;
this->count = ;
} void queue::reset (int N)
{
const int maxn = ;
if (N < || N > ) this->QN = ;
else
this->QN = N; for (int i = ; i < maxn; i++)
this->board[i] = false;
this->judgeRecursion = true;
this->count = ;
} queue::~queue ()
{
delete []board;
board = nullptr;
} /**
* @brief queue::answer --- 放置皇后
* @param solu --- 求解的方法数
* @param Crow --- 当前的行数
* @param Q --- 棋盘,用来打印
*/
void queue::answer (int solu, int cur, bool *Q)
{
if (!judgeRecursion) //递归结束,中断
return;
if (cur == QN) { //当前行到最后一行,则一种方案结束
count++;
if (count == solu) { //递归到第solu方案时停止
this->show (Q);
judgeRecursion = false; //停止递归
return;
}
return;
}
else
{
for (int col = ; col < QN; col++)
{
if (available (cur, col)) //检查当前行,列
{
board[cur * QN + col] = true; //合法则放置皇后
answer (solu, cur + , Q); //递归下一行
//如果回溯法中使用了辅助的全局变量,则一定要及时把它们恢复原状.
//特别的,若函数有多个出口,则需在每个出口处恢复被修改的值
board[cur * QN + col] = false;
}
}
}
}
源代码下载地址:链接:https://pan.baidu.com/s/12BTDR8pRMvxpKYNFb988EQ 密码:yk0o
八皇后问题动态演示_Qt5实现的更多相关文章
- C#中八皇后问题的递归解法——N皇后
百度测试部2015年10月份的面试题之——八皇后. 八皇后问题的介绍在此.以下是用递归思想实现八皇后-N皇后. 代码如下: using System;using System.Collections. ...
- java递归求八皇后问题解法
八皇后问题 八皇后问题,是一个古老而著名的问题,是回溯算法的典型案例.该问题是国际西洋棋棋手马克斯·贝瑟尔于1848年提出:在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处 ...
- 八皇后问题——列出所有的解,可推至N皇后
<数据结构>--邓俊辉版本 读书笔记 今天学习了回溯法,有两道习题,一道N皇后,一道迷宫寻径.今天,先解决N皇后问题.由于笔者 擅长java,所以用java重现了八皇后问题. 注意是jav ...
- 题目---汉诺塔及AI代码及八皇后
2019春第十一周作业 这个作业属于那个课程 C语言程序设计II 这个作业要求在哪里 https://edu.cnblogs.com/campus/zswxy/software-engineering ...
- 八皇后算法的另一种实现(c#版本)
八皇后: 八皇后问题,是一个古老而著名的问题,是回溯算法的典型案例.该问题是国际西洋棋棋手马克斯·贝瑟尔于1848年提出:在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于 ...
- 数据结构0103汉诺塔&八皇后
主要是从汉诺塔及八皇后问题体会递归算法. 汉诺塔: #include <stdio.h> void move(int n, char x,char y, char z){ if(1==n) ...
- [Unity][Heap sort]用Unity动态演示堆排序的过程(How Heap Sort Works)
[Unity][Heap sort]用Unity动态演示堆排序的过程 How Heap Sort Works 最近做了一个用Unity3D动态演示堆排序过程的程序. I've made this ap ...
- Python学习二(生成器和八皇后算法)
看书看到迭代器和生成器了,一般的使用是没什么问题的,不过很多时候并不能用的很习惯 书中例举了经典的八皇后问题,作为一个程序员怎么能够放过做题的机会呢,于是乎先自己来一遍,于是有了下面这个ugly的代码 ...
- Python解决八皇后问题
最近看Python看得都不用tab键了,哈哈.今天看了一个经典问题--八皇后问题,说实话,以前学C.C++的时候有这个问题,但是当时不爱学,没搞会,后来算法课上又碰到,只是学会了思想,应该是学回溯法的 ...
随机推荐
- Linux基础学习(5)--文本编辑器Vim
第五章——文本编辑器Vim 一. Vim常用操作 1.Vim简介: Vim是一个功能强大的全屏幕文本编辑器,是Linux/UNIX上最常用的文本编辑器,它的作用是建立.编辑. ...
- ssh 将22端口换为其它 防火墙设置
废话不多说,先通过当前的SSH端口(默认为:22)登陆. 1.修改配置文件:/etc/ssh/sshd_config ,找到 #port 22 2.先将Port 22 前面的 # 号去掉,并另起一行. ...
- Nginx HTTP 过滤addition模块(响应前后追加数据)
--with-http_addition_module 需要编译进Nginx 其功能主要在响应前或响应后追加内容 add_before_body 指令 将处理给定子请求后返回的文本添加到响应正文之前 ...
- BZOJ3420[POI2013]Triumphal arch&BZOJ5174[Jsoi2013]哈利波特与死亡圣器——树形DP+二分答案
题目大意: 给一颗树,1号节点已经被染黑,其余是白的,两个人轮流操作,一开始B在1号节点,A选择k个点染黑,然后B走一步,如果B能走到A没染的节点则B胜,否则当A染完全部的点时,A胜.求能让A获胜的最 ...
- 我的G++编译选项
-Wall -Wextra -g3 -DLOCAL -Wshadow -Wpointer-arith -Wcast-qual -Waggregate-return -Winline -Wunreach ...
- poj 2114 Boatherds (树分治)
链接:http://poj.org/problem?id=2114 题意: 求树上距离为k的点对数量: 思路: 点分治.. 实现代码: #include<iostream> #includ ...
- 01 Zabbix采集数据方式
Zabbix采集数据方式 1. zabbix采集数据方式: 基于专用agent 被监控的设备上面安装agent软件,这个agent必须在设备上面有采集数据的权限 基于SNMP, net-snmp ...
- 【BZOJ2245】[SDOI2011]工作安排(费用流)
[BZOJ2245][SDOI2011]工作安排(费用流) 题面 BZOJ 洛谷 题解 裸的费用流吧. 不需要拆点,只需要连边就好了,保证了\(W_j<W_{j+1}\). #include&l ...
- 【转】cJSON 源码阅读笔记
前言 cjson 的代码只有 1000+ 行, 而且只是简单的几个函数的调用. 而且 cjson 还有很多不完善的地方, 推荐大家看完之后自己实现一个 封装好的功能完善的 cjson 程序. json ...
- 洛谷P3622 动物园
题意:给定一个n个元素的圈,m个条件.满足一个条件需要选某些元素或不选另一些元素. 问最多能满足多少条件.每个条件所关联的元素,最远的两个距离不会超过5. 解:想了半天...... 首先能想到断环成链 ...