题解:

一道很经典的组合数+dp

首先考虑f[i][j][k]表示前k种颜色正好占据了i行j列

转移的话就是枚举第k种颜色占据了几行几列 通过自身转移

然后其在内部的相对顺序是不确定的所以要乘以组合数

f[i][j][k]=f[x][y][k-1]*C(i,x)*C(j,y)*g[i-x][j-y][k] 其中g[i-x][j-y][k]表示第k种颜色正好占据这i-x,j-y的方案数

接下来考虑如何计算g[i][j][k]

我们会发现这个东西不好递推。。因为不知道当前占据了哪几行

而且也不太好从自身dp,因为可能会有重复

那么考虑一下容斥

g[i][j][k]=C(i*j,a[k])-g[x][y][k]*C(i,x)*C(j,y)

为什么这样是不重复的呢

因为当x和y不同时,显然有格子的行or列数不一样

当x和y相同时,由于布局不一样,也一定有行or列数不一样

这就是定义状态为严格满足占据了i行j列的优势所在

【BZOJ 3294】[Cqoi2011]放棋子的更多相关文章

  1. BZOJ 3294: [Cqoi2011]放棋子

    3294: [Cqoi2011]放棋子 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 628  Solved: 238[Submit][Status] ...

  2. BZOJ 3294: [Cqoi2011]放棋子 计数 + 容斥 + 组合

    比较头疼的计数题. 我们发现,放置一个棋子会使得该棋子所在的1个行和1个列都只能放同种棋子. 定义状态 $f_{i,j,k}$ 表示目前已使用了 $i$ 个行,$j$ 个列,并放置了前 $k$ 种棋子 ...

  3. BZOJ 3294: [Cqoi2011]放棋子(计数dp)

    传送门 解题思路 设\(f[i][j][k]\)表示前\(k\)个颜色的棋子占领了\(i\)行\(j\)列的方案数,那么转移时可以枚举上一个颜色时占领的位置,\(f[i][j][k]=\sum\lim ...

  4. 【BZOJ 3294】 3294: [Cqoi2011]放棋子 (DP+组合数学+容斥原理)

    3294: [Cqoi2011]放棋子 Description Input 输入第一行为两个整数n, m, c,即行数.列数和棋子的颜色数.第二行包含c个正整数,即每个颜色的棋子数.所有颜色的棋子总数 ...

  5. bzoj千题计划261:bzoj3294: [Cqoi2011]放棋子

    http://www.lydsy.com/JudgeOnline/problem.php?id=3294 如果一个颜色的棋子放在了第i行第j列,那这种颜色就会占据第i行第j列,其他颜色不能往这儿放 设 ...

  6. bzoj3294[Cqoi2011]放棋子 dp+组合+容斥

    3294: [Cqoi2011]放棋子 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 755  Solved: 294[Submit][Status] ...

  7. [CQOI2011]放棋子 (DP,数论)

    [CQOI2011]放棋子 \(solution:\) 看到这道题我们首先就应该想到有可能是DP和数论,因为题目已经很有特性了(首先题面是放棋子)(然后这一题方案数很多要取模)(而且这一题的数据范围很 ...

  8. [洛谷P3158] [CQOI2011]放棋子

    洛谷题目链接:[CQOI2011]放棋子 题目描述 在一个m行n列的棋盘里放一些彩色的棋子,使得每个格子最多放一个棋子,且不同 颜色的棋子不能在同一行或者同一列.有多少祌方法?例如,n=m=3,有两个 ...

  9. P3158 [CQOI2011]放棋子(dp+组合数)

    P3158 [CQOI2011]放棋子 放棋子的顺序和方案数无关,所以可以从按颜色递推 设$f[u][p][k]$为放到第$u$种颜色,所剩空间$p*k$的方案数 $g[u][i][j]$表示第$u$ ...

  10. BZOJ3294: [Cqoi2011]放棋子

    Description   Input 输入第一行为两个整数n, m, c,即行数.列数和棋子的颜色数.第二行包含c个正整数,即每个颜色的棋子数.所有颜色的棋子总数保证不超过nm. Output 输出 ...

随机推荐

  1. 转--Python标准库之一句话概括

    作者原文链接 想掌握Python标准库,读它的官方文档很重要.本文并非此文档的复制版,而是对每一个库的一句话概括以及它的主要函数,由此用什么库心里就会有数了. 文本处理 string: 提供了字符集: ...

  2. mysql的事件

    mysql的事件定时器的使用: SHOW VARIABLES LIKE 'event_scheduler' --查询event_scheduler开启状态 SET GLOBAL event_sched ...

  3. 图片压缩之-JPEGCodec失效替换方案

    今天遇到一个405错误,提示Method not allowed ,一直以为是控制器出问题了,后来发现实际上是Jpeg库有问题.刚开始用这个库,没想到已经不推荐使用了.下面是网上找的解决方案.http ...

  4. 使用 CSS3 的 box-sizing 属性设置元素大小包含 border 与 padding

    Ø  默认情况下,内部元素(如:input)的宽度或高度,是不会包含元素的边框和内边距的,这时就需要使用 box-sizing 属性设置该元素. Ø  box-sizing 是 CSS3 的属性,可以 ...

  5. npm快捷键

    一.npm基本快捷键 node -v查看安装的nodejs版本,出现版本号,说明刚刚已正确安装nodejs.PS:未能出现版本号,请尝试注销电脑重试: npm -v查看npm的版本号,npm是在安装n ...

  6. script标签中type为"text/x-template"或"text/html"

    写过一点前端的都会碰到需要使用JS字符串拼接HTML元素然后append到页面DOM树上的情况,一般的写法都是使用+号以字符串的形式拼接,如果是短点的还好,如果很长很长的话就会拼接到令人崩溃了. 比如 ...

  7. 梯度优化算法总结以及solver及train.prototxt中相关参数解释

    参考链接:http://sebastianruder.com/optimizing-gradient-descent/ 如果熟悉英文的话,强烈推荐阅读原文,毕竟翻译过程中因为个人理解有限,可能会有谬误 ...

  8. Ubuntu 16.04配置国内高速apt-get更新源【转】

    转自:https://blog.csdn.net/twang0x80/article/details/79782753 Ubuntu 16.04下载软件速度有点慢,因为默认的是从国外下载软件,那就更换 ...

  9. ulimit -n 修改

    Linux系统里打开文件描述符的最大值,一般缺省值是1024,对一台繁忙的服务器来说,这个值偏小,所以有必要重新设置linux系统里打开文件描述符的最大值.那么应该在哪里设置呢? [root@loca ...

  10. Python3学习笔记12-定义函数及调用

    函数是组织好的,可重复使用的,用来实现单一,或相关联功能的代码段,能提高应用的模块性,和代码的重复利用率 Python提供了许多内建函数,比如print().也可以自己创建函数,这被叫做用户自定义函数 ...