1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。

2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:

select id from t where num is null

可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:

select id from t where num=0

3.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。

4.应尽量避免在 where 子句中使用 or 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,如:

select id from t where num=10 or num=20

可以这样查询:

select id from t where num=10

union all

select id from t where num=20

5.in 和 not in 也要慎用,否则会导致全表扫描,如:

select id from t where num in(1,2,3)

对于连续的数值,能用 between 就不要用 in 了:

select id from t where num between 1 and 3

6.下面的查询也将导致全表扫描:

select id from t where name like '%abc%'

若要提高效率,可以考虑全文检索。

7.如果在 where 子句中使用参数,也会导致全表扫描。因为SQL只有在运行时才会解析局部变量,但优化程序不能将访问计划的选择推迟到运行时;它必须在编译时进行选择。然而,如果在编译时建立访问计划,变量的值还是未知的,因而无法作为索引选择的输入项。如下面语句将进行全表扫描:

select id from t where num=@num

可以改为强制查询使用索引:

select id from t with(index(索引名)) where num=@num

8.应尽量避免在 where 子句中对字段进行表达式操作,这将导致引擎放弃使用索引而进行全表扫描。如:

select id from t where num/2=100

应改为:

select id from t where num=100*2

9.应尽量避免在where子句中对字段进行函数操作,这将导致引擎放弃使用索引而进行全表扫描。如:

select id from t where substring(name,1,3)='abc'--name以abc开头的id

select id from t where datediff(day,createdate,'2005-11-30')=0--‘2005-11-30’生成的id

应改为:

select id from t where name like 'abc%'

select id from t where createdate>='2005-11-30' and createdate<'2005-12-1'

10.不要在 where 子句中的“=”左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用索引。

11.在使用索引字段作为条件时,如果该索引是复合索引,那么必须使用到该索引中的第一个字段作为条件时才能保证系统使用该索引,否则该索引将不会被使用,并且应尽可能的让字段顺序与索引顺序相一致。

12.不要写一些没有意义的查询,如需要生成一个空表结构:

select col1,col2 into #t from t where 1=0

这类代码不会返回任何结果集,但是会消耗系统资源的,应改成这样:

create table #t(...)

13.很多时候用 exists 代替 in 是一个好的选择:

select num from a where num in(select num from b)

用下面的语句替换:

select num from a where exists(select 1 from b where num=a.num)

14.并不是所有索引对查询都有效,SQL是根据表中数据来进行查询优化的,当索引列有大量数据重复时,SQL查询可能不会去利用索引,如一表中有字段sex,male、female几乎各一半,那么即使在sex上建了索引也对查询效率起不了作用。

15.索引并不是越多越好,索引固然可以提高相应的 select 的效率,但同时也降低了 insert 及 update 的效率,因为 insert 或 update 时有可能会重建索引,所以怎样建索引需要慎重考虑,视具体情况而定。一个表的索引数最好不要超过6个,若太多则应考虑一些不常使用到的列上建的索引是否有必要。

16.应尽可能的避免更新 clustered 索引数据列,因为 clustered 索引数据列的顺序就是表记录的物理存储顺序,一旦该列值改变将导致整个表记录的顺序的调整,会耗费相当大的资源。若应用系统需要频繁更新 clustered 索引数据列,那么需要考虑是否应将该索引建为 clustered 索引。

17.尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型,这会降低查询和连接的性能,并会增加存储开销。这是因为引擎在处理查询和连接时会逐个比较字符串中每一个字符,而对于数字型而言只需要比较一次就够了。

18.尽可能的使用 varchar/nvarchar 代替 char/nchar ,因为首先变长字段存储空间小,可以节省存储空间,其次对于查询来说,在一个相对较小的字段内搜索效率显然要高些。

19.任何地方都不要使用 select * from t ,用具体的字段列表代替“*”,不要返回用不到的任何字段。

20.尽量使用表变量来代替临时表。如果表变量包含大量数据,请注意索引非常有限(只有主键索引)。

21.避免频繁创建和删除临时表,以减少系统表资源的消耗。

22.临时表并不是不可使用,适当地使用它们可以使某些例程更有效,例如,当需要重复引用大型表或常用表中的某个数据集时。但是,对于一次性事件,最好使用导出表。

23.在新建临时表时,如果一次性插入数据量很大,那么可以使用 select into 代替 create table,避免造成大量 log ,以提高速度;如果数据量不大,为了缓和系统表的资源,应先create table,然后insert。

24.如果使用到了临时表,在存储过程的最后务必将所有的临时表显式删除,先 truncate table ,然后 drop table ,这样可以避免系统表的较长时间锁定。

25.尽量避免使用游标,因为游标的效率较差,如果游标操作的数据超过1万行,那么就应该考虑改写。

26.使用基于游标的方法或临时表方法之前,应先寻找基于集的解决方案来解决问题,基于集的方法通常更有效。

27.与临时表一样,游标并不是不可使用。对小型数据集使用 FAST_FORWARD 游标通常要优于其他逐行处理方法,尤其是在必须引用几个表才能获得所需的数据时。在结果集中包括“合计”的例程通常要比使用游标执行的速度快。如果开发时间允许,基于游标的方法和基于集的方法都可以尝试一下,看哪一种方法的效果更好。

28.在所有的存储过程和触发器的开始处设置 SET NOCOUNT ON ,在结束时设置 SET NOCOUNT OFF 。无需在执行存储过程和触发器的每个语句后向客户端发送 DONE_IN_PROC 消息。

29.尽量避免大事务操作,提高系统并发能力。

30.尽量避免向客户端返回大数据量,若数据量过大,应该考虑相应需求是否合理。

(转)mysql百万级以上查询优化的更多相关文章

  1. MYSQL百万级数据,如何优化

    MYSQL百万级数据,如何优化     首先,数据量大的时候,应尽量避免全表扫描,应考虑在 where 及 order by 涉及的列上建立索引,建索引可以大大加快数据的检索速度.但是,有些情况索引是 ...

  2. MySQL 百万级分页优化

    MySQL 百万级分页优化 http://www.jb51.net/article/31868.htm 一般刚开始学SQL的时候,会这样写 : , ; 但在数据达到百万级的时候,这样写会慢死 : , ...

  3. mysql 百万级查询优化

    关于mysql处理百万级以上的数据时如何提高其查询速度的方法 最近一段时间由于工作需要,开始关注针对Mysql数据库的select查询语句的相关优化方法. 由于在参与的实际项目中发现当mysql表的数 ...

  4. mysql 百万级数据库优化方案

    https://blog.csdn.net/Kaitiren/article/details/80307828 一.百万级数据库优化方案 1.对查询进行优化,要尽量避免全表扫描,首先应考虑在 wher ...

  5. MySQL百万级、千万级数据多表关联SQL语句调优

    本文不涉及复杂的底层数据结构,通过explain解释SQL,并根据可能出现的情况,来做具体的优化,使百万级.千万级数据表关联查询第一页结果能在2秒内完成(真实业务告警系统优化结果).希望读者能够理解S ...

  6. MySQL 百万级分页优化(Mysql千万级快速分页)(转)

    http://www.jb51.net/article/31868.htm 以下分享一点我的经验 一般刚开始学SQL的时候,会这样写 复制代码 代码如下: SELECT * FROM table OR ...

  7. MySQL 百万级分页优化(Mysql千万级快速分页)

    以下分享一点我的经验 一般刚开始学SQL的时候,会这样写 : SELECT * FROM table ORDER BY id LIMIT 1000, 10; 但在数据达到百万级的时候,这样写会慢死 : ...

  8. mysql百万级分页优化

    普通分页 数据分页在网页中十分多见,分页一般都是limit start,offset,然后根据页码page计算start , 这种分页在几十万的时候分页效率就会比较低了,MySQL需要从头开始一直往后 ...

  9. mysql百万级全文索引及match快速查找

    建立全文索引的表的存储引擎类型必须为MyISAM 问题是match   against对中文模糊搜索支持不是太好 新建一个utf8 MyISAM类型的表并建立一个全文索引  : CREATE TABL ...

随机推荐

  1. ITxlab倡议启动“互联网X大脑”计划

    导语:"互联网X大脑"计划由ITxlab(互联网X实验室)联合科学院相关机构.基于7年以来取得的研究成果,倡议建立的互联网与脑科学前沿研究平台,吸引不同领域专家进行科学研究和成果交 ...

  2. API判断本机安装的Revit版本信息

    start [Transaction(TransactionMode.Manual)] [Regeneration(RegenerationOption.Manual)] public class c ...

  3. Docker修改daemon.json后无法启动的问题

    本文的运行环境为Centos 7.3,Docker与Kubernetes的安装方式见kubeadm安装kubernetes V1.11.1 集群 最近在整理Docker和Kubernetes中的日志与 ...

  4. Android夜间模式的几种实现

    一.直接修改widget颜色,这种方式实现起来最简单,但需要每个控件都去修改,太过复杂.例如: /** * 相应交互,修改控件颜色 * @param view */public void onMeth ...

  5. grid - 网格轨道最小和最大尺寸

    可以通过minmax()函数来创建网格轨道的最小或最大尺寸. minmax()函数接受两个参数: 第一个参数定义网格轨道的最小值 第二个参数定义网格轨道的最大值 可以接受任何长度值,也接受auto值. ...

  6. 微软BI 之SSIS 系列 - Lookup 组件的使用与它的几种缓存模式 - Full Cache, Partial Cache, NO Cache

    开篇介绍 先简单的演示一下使用 Lookup 组件实现一个简单示例 - 从数据源表 A 中导出数据到目标数据表 B,如果 A 数据在 B 中不存在就插入新数据到B,如果存在就更新B 和 A 表数据保持 ...

  7. ionic 001

    安装和穿件app npm install -g cordova ionic 使用模板创建app ionic start myApp blank ionic start myApp tabs ionic ...

  8. java中常用jar包

    commons-io.jar:可以看成是java.io的扩展,用来帮助进行IO功能开发.它包含三个主要的领域:Utilityclasses-提供一些静态方法来完成公共任务.Filters-提供文件过滤 ...

  9. 《STL源码剖析》学习之traits编程

    侯捷老师在<STL源码剖析>中说到:了解traits编程技术,就像获得“芝麻开门”的口诀一样,从此得以一窥STL源码的奥秘.如此一说,其重要性就不言而喻了.      之前已经介绍过迭代器 ...

  10. 【C语言】字节对齐问题(以32位系统为例)

    1. 什么是对齐? 现代计算机中内存空间都是按照字节(byte)划分的,从理论上讲似乎对任何类型的变量的访问可以从任何地址开始,但实际情况是在访问特定变量的时候经常在特定的内存地址访问,这就需要各类型 ...