数据分析与挖掘 - R语言:KNN算法
一个简单的例子!
环境:CentOS6.5
Hadoop集群、Hive、R、RHive,具体安装及调试方法见博客内文档。
KNN算法步骤:
需对所有样本点(已知分类+未知分类)进行归一化处理。然后,对未知分类的数据集中的每个样本点依次执行以下操作:
1、计算已知类别数据集中的点与当前点(未知分类)的距离。
2、按照距离递增排序
3、选取与当前距离最小的k个点
4、确定前k个点所在类别的出现频率
5、返回前k个点出现频率最高的类别作为当前点的预测类别
编写R脚本:
#!/usr/bin/Rscript
#1、对iris进行归一化处理
iris_s <- data.frame(scale(iris[, 1:4]))
iris_s <- cbind(iris_s, iris[, 5])
names(iris_s)[5] = "Species" #2、对iris数据集随机选择其中的100条记录作为已知分类的样本集
sample.list <- sample(1:150, size = 100)
iris.known <- iris_s[sample.list, ] #3、剩余50条记录作为未知分类的样本集(测试集)
iris.unknown <- iris_s[-sample.list, ] #4、对测试集中的每一个样本,计算其与已知样本的距离,因为已经归一化,此处直接使用欧氏距离
length.known <- nrow(iris.known)
length.unknown <- nrow(iris.unknown) #5、计算
for (i in 1:length.unknown) {
dis_to_known <- data.frame(dis = rep(0, length.known))
for (j in 1:length.known) {
dis_to_known[j, 1] <- dist(rbind(iris.unknown[i, 1:4], iris.known[j,1:4]), method = "euclidean")
dis_to_known[j, 2] <- iris.known[j, 5]
names(dis_to_known)[2] = "Species"
} dis_to_known <- dis_to_known[order(dis_to_known$dis), ] k <- 5
type_freq <- as.data.frame(table(dis_to_known[1:k, ]$Species))
type_freq <- type_freq[order(-type_freq$Freq), ]
iris.unknown[i, 6] <- type_freq[1, 1]
} names(iris.unknown)[6] = "Species.pre" #7、输出分类结果
iris.unknown[, 5:6]
输出结果:略,结果集中,Species为样本实际分类,Species.pre为Knn算法的分类,正确率达90%以上。
KNN是有监督的学习算法,其特点有:
1、精度高,对异常值不敏感
2、只能处理数值型属性
3、计算复杂度高(如已知分类的样本数为n,那么对每个未知分类点要计算n个距离)
KNN算法存在的问题:
1、k值的确定是个难题。
2、如果距离最近的k个已知分类样本中,频数最高的类型有多个(频数相同),如何选择对未知样本的分类?目前看是随机的。
3、如果有n个未知类型样本,m个已知类型样本,则需要计算n*m个距离,计算量较大,且需存储全部数据集合,空间复杂度也较大。
4、能否把预测的样本分类加入到已知类别集合中,对剩余的未知类型样本进行分类?
5、归一化放在所有处理的最前面,这样需要知道全部的样本集合(已知分类+未知分类)来构建分类器,而实际上未知分类的样本并不一定能事先获得,这样如何进行归一化处理?
数据分析与挖掘 - R语言:KNN算法的更多相关文章
- 零基础数据分析与挖掘R语言实战课程(R语言)
随着大数据在各行业的落地生根和蓬勃发展,能从数据中挖金子的数据分析人员越来越宝贝,于是很多的程序员都想转行到数据分析, 挖掘技术哪家强?当然是R语言了,R语言的火热程度,从TIOBE上编程语言排名情况 ...
- 数据分析与挖掘 - R语言:贝叶斯分类算法(案例一)
一个简单的例子!环境:CentOS6.5Hadoop集群.Hive.R.RHive,具体安装及调试方法见博客内文档. 名词解释: 先验概率:由以往的数据分析得到的概率, 叫做先验概率. 后验概率:而在 ...
- 数据分析与挖掘 - R语言:贝叶斯分类算法(案例三)
案例三比较简单,不需要自己写公式算法,使用了R自带的naiveBayes函数. 代码如下: > library(e1071)> classifier<-naiveBayes(iris ...
- 数据分析与挖掘 - R语言:K-means聚类算法
一个简单的例子!环境:CentOS6.5Hadoop集群.Hive.R.RHive,具体安装及调试方法见博客内文档. 1.分析题目--有一个用户点击数据样本(husercollect)--按用户访问的 ...
- 数据分析与挖掘 - R语言:贝叶斯分类算法(案例二)
接着案例一,我们再使用另一种方法实例一个案例 直接上代码: #!/usr/bin/Rscript library(plyr) library(reshape2) #1.根据训练集创建朴素贝叶斯分类器 ...
- 数据分析与挖掘 - R语言:多元线性回归
一个简单的例子!环境:CentOS6.5Hadoop集群.Hive.R.RHive,具体安装及调试方法见博客内文档. 线性回归主要用来做预测模型. 1.准备数据集: X Y 0.10 42.0 0.1 ...
- R语言分类算法之随机森林
R语言分类算法之随机森林 1.原理分析: 随机森林是通过自助法(boot-strap)重采样技术,从原始训练样本集N中有放回地重复随机抽取k个样本生成新的训练集样本集合,然后根据自助样本集生成k个决策 ...
- R语言 神经网络算法
人工神经网络(ANN),简称神经网络,是一种模仿生物神经网络的结构和功能的数学模型或计算模型.神经网络由大量的人工神经元联结进行计算.大多数情况下人工神经网络能在外界信息的基础上改变内部结构,是一种自 ...
- R语言 推荐算法 recommenderlab包
recommend li_volleyball 2016年3月20日 library(recommenderlab) library(ggplot2) # data(MovieLense) dim(M ...
随机推荐
- 静态,关键字:static 接口,IUSB , API 接口关键字:interface
//静态 //普通成员 //普通成员是属于对象的 //静态成员 //静态成员属于类的 //关键字:static //self关键字:在类里面代表该类 //在静态方法里面不能调用普通成员 //在普通方法 ...
- html学习_html5 新增标签和属性
html5 新增标签和属性 1.html发展历程(html有很多版本) 2.快捷键生成不同版本(html4.xhtml.html5) 文档类型不同.字符设定 3.常用新标签 (只有html5才识别的标 ...
- html学习_表格、表单
表格(table):是用来处理表格式数据的,不是用来布局的. table > tr(行标签)> td(单元格标签) 1.表格注意事项: tr只能放置td标签,td里面可以放置任意元素. ...
- tfidf_CountVectorizer 与 TfidfTransformer 保存和测试
做nlp的时候,如果用到tf-idf,sklearn中用CountVectorizer与TfidfTransformer两个类,下面对和两个类进行讲解 一.训练以及测试 CountVectorizer ...
- FutureTask的用法及两种常用的使用场景
FutureTask可用于异步获取执行结果或取消执行任务的场景.通过传入Runnable或者Callable的任务给FutureTask,直接调用其run方法或者放入线程池执行,之后可以在外部通过Fu ...
- ASP.NET MVC 母版页
为什么使用母版页?为了整个站点样式统一,任何WEB应用程序都应该使用母版页.MVC框架中,有新的方式为母版页传递数据. 一个WEB应用程序可以包含多个母版页,母版页用于定义页面布局,它与普 ...
- en-zh(科学技术)science and technology
S Korea to roll out 5G韩国正式推5G商用服务 South Korea will become the first country to commercially launch f ...
- 转:Java 异常结构体系
原文地址:Java 异常结构体系 保存一份资料 前几天在参加网易和360公司的在线考试的时候,都出了一道关于java中异常类的多项选择题.这几天翻看了相关书籍和网上一些资料,结合自己的理解与思考,将自 ...
- mimkatz 用法
mimikatz用法 privilege::debug 进入debug模式 sekurlsa::logonPasswords 查看所有用户密码 sekurlsa::wdigest 读取当前登录用 ...
- schtasks 命令使用
schtasks /create 创建任务,下面是常用参数 /tn taskname /tr taskrun /sc schedule [Minute | Hourly | Daly | We ...