数据分析与挖掘 - R语言:KNN算法
一个简单的例子!
环境:CentOS6.5
Hadoop集群、Hive、R、RHive,具体安装及调试方法见博客内文档。
KNN算法步骤:
需对所有样本点(已知分类+未知分类)进行归一化处理。然后,对未知分类的数据集中的每个样本点依次执行以下操作:
1、计算已知类别数据集中的点与当前点(未知分类)的距离。
2、按照距离递增排序
3、选取与当前距离最小的k个点
4、确定前k个点所在类别的出现频率
5、返回前k个点出现频率最高的类别作为当前点的预测类别
编写R脚本:
#!/usr/bin/Rscript
#1、对iris进行归一化处理
iris_s <- data.frame(scale(iris[, 1:4]))
iris_s <- cbind(iris_s, iris[, 5])
names(iris_s)[5] = "Species" #2、对iris数据集随机选择其中的100条记录作为已知分类的样本集
sample.list <- sample(1:150, size = 100)
iris.known <- iris_s[sample.list, ] #3、剩余50条记录作为未知分类的样本集(测试集)
iris.unknown <- iris_s[-sample.list, ] #4、对测试集中的每一个样本,计算其与已知样本的距离,因为已经归一化,此处直接使用欧氏距离
length.known <- nrow(iris.known)
length.unknown <- nrow(iris.unknown) #5、计算
for (i in 1:length.unknown) {
dis_to_known <- data.frame(dis = rep(0, length.known))
for (j in 1:length.known) {
dis_to_known[j, 1] <- dist(rbind(iris.unknown[i, 1:4], iris.known[j,1:4]), method = "euclidean")
dis_to_known[j, 2] <- iris.known[j, 5]
names(dis_to_known)[2] = "Species"
} dis_to_known <- dis_to_known[order(dis_to_known$dis), ] k <- 5
type_freq <- as.data.frame(table(dis_to_known[1:k, ]$Species))
type_freq <- type_freq[order(-type_freq$Freq), ]
iris.unknown[i, 6] <- type_freq[1, 1]
} names(iris.unknown)[6] = "Species.pre" #7、输出分类结果
iris.unknown[, 5:6]
输出结果:略,结果集中,Species为样本实际分类,Species.pre为Knn算法的分类,正确率达90%以上。
KNN是有监督的学习算法,其特点有:
1、精度高,对异常值不敏感
2、只能处理数值型属性
3、计算复杂度高(如已知分类的样本数为n,那么对每个未知分类点要计算n个距离)
KNN算法存在的问题:
1、k值的确定是个难题。
2、如果距离最近的k个已知分类样本中,频数最高的类型有多个(频数相同),如何选择对未知样本的分类?目前看是随机的。
3、如果有n个未知类型样本,m个已知类型样本,则需要计算n*m个距离,计算量较大,且需存储全部数据集合,空间复杂度也较大。
4、能否把预测的样本分类加入到已知类别集合中,对剩余的未知类型样本进行分类?
5、归一化放在所有处理的最前面,这样需要知道全部的样本集合(已知分类+未知分类)来构建分类器,而实际上未知分类的样本并不一定能事先获得,这样如何进行归一化处理?
数据分析与挖掘 - R语言:KNN算法的更多相关文章
- 零基础数据分析与挖掘R语言实战课程(R语言)
随着大数据在各行业的落地生根和蓬勃发展,能从数据中挖金子的数据分析人员越来越宝贝,于是很多的程序员都想转行到数据分析, 挖掘技术哪家强?当然是R语言了,R语言的火热程度,从TIOBE上编程语言排名情况 ...
- 数据分析与挖掘 - R语言:贝叶斯分类算法(案例一)
一个简单的例子!环境:CentOS6.5Hadoop集群.Hive.R.RHive,具体安装及调试方法见博客内文档. 名词解释: 先验概率:由以往的数据分析得到的概率, 叫做先验概率. 后验概率:而在 ...
- 数据分析与挖掘 - R语言:贝叶斯分类算法(案例三)
案例三比较简单,不需要自己写公式算法,使用了R自带的naiveBayes函数. 代码如下: > library(e1071)> classifier<-naiveBayes(iris ...
- 数据分析与挖掘 - R语言:K-means聚类算法
一个简单的例子!环境:CentOS6.5Hadoop集群.Hive.R.RHive,具体安装及调试方法见博客内文档. 1.分析题目--有一个用户点击数据样本(husercollect)--按用户访问的 ...
- 数据分析与挖掘 - R语言:贝叶斯分类算法(案例二)
接着案例一,我们再使用另一种方法实例一个案例 直接上代码: #!/usr/bin/Rscript library(plyr) library(reshape2) #1.根据训练集创建朴素贝叶斯分类器 ...
- 数据分析与挖掘 - R语言:多元线性回归
一个简单的例子!环境:CentOS6.5Hadoop集群.Hive.R.RHive,具体安装及调试方法见博客内文档. 线性回归主要用来做预测模型. 1.准备数据集: X Y 0.10 42.0 0.1 ...
- R语言分类算法之随机森林
R语言分类算法之随机森林 1.原理分析: 随机森林是通过自助法(boot-strap)重采样技术,从原始训练样本集N中有放回地重复随机抽取k个样本生成新的训练集样本集合,然后根据自助样本集生成k个决策 ...
- R语言 神经网络算法
人工神经网络(ANN),简称神经网络,是一种模仿生物神经网络的结构和功能的数学模型或计算模型.神经网络由大量的人工神经元联结进行计算.大多数情况下人工神经网络能在外界信息的基础上改变内部结构,是一种自 ...
- R语言 推荐算法 recommenderlab包
recommend li_volleyball 2016年3月20日 library(recommenderlab) library(ggplot2) # data(MovieLense) dim(M ...
随机推荐
- ubuntu-18.04 root登录图形界面失败问题解决方案
一.设置root密码 二.进入/etc/pam.d目录 主要修改两个文件(圈了红色框框),记得命令行下切换root账户(sudo -i)进行vim修改,刚安装的ubuntu没有vim支持,请根据提示进 ...
- codeforces#525 Div2---ABC
A---Ehab and another constriction problem https://codeforc.es/contest/1088/problem/A 题意:给定一个数$x$找两个在 ...
- ASP.NET MVC 系统过滤器、自定义过滤器
一.系统过滤器使用说明 1.OutputCache过滤器 OutputCache过滤器用于缓存你查询结果,这样可以提高用户体验,也可以减少查询次数.它有以下属性: Duration:缓存的时间,以秒为 ...
- 【编译原理】c++实现词法分析器
写在前面:本博客为本人原创,严禁任何形式的转载!本博客只允许放在博客园(.cnblogs.com),如果您在其他网站看到这篇博文,请通过下面这个唯一的合法链接转到原文! 本博客全网唯一合法URL:ht ...
- post/get in console of JSarray/js 数组详细操作方法及解析合集
https://juejin.im/post/5b0903b26fb9a07a9d70c7e0[ js 数组详细操作方法及解析合集 js array and for each https://blog ...
- Flash片头loading与MovieClipLoader
//创建侦听器,侦听是否加载完成 var loader = new MovieClipLoader(); loader.onLoadComplete = function(obj) { if(obj ...
- hadoop 学习笔记2
============Hive vs Hadoop============== Hive是建立在Hadoop之上为了减少MapReduce jobs编写工作的批处理系统,HBase是为了支持弥补Ha ...
- Python生成器表达式
https://www.cnblogs.com/liu-shuai/p/6098218.html 简介: 生成器表达式并不真正的创建数字列表,而是返回一个生成器对象,此对象在每次计算出一个条目后,把这 ...
- ubuntu物理机上搭建Kubernetes集群 -- 准备
准备工作 1.kubernetes架构 2.三台ubuntu主机: 操作系统:ubuntu-16.04.1-server-amd64 docker: 1.安装 使用命令 sudo apt-get in ...
- 实验一:Java开发环境的熟悉
实验一:Java开发环境的熟悉 一.实验一-1 在码云中建立"20165317exp1"的项目. 从git中下载该项目. 在"20165317exp1"目录下建 ...