ReentrantLock可重入锁的原理及使用场景
摘要
从使用场景的角度出发来介绍对ReentrantLock的使用,相对来说容易理解一些。
场景1:如果已加锁,则不再重复加锁
a、忽略重复加锁。
b、用在界面交互时点击执行较长时间请求操作时,防止多次点击导致后台重复执行(忽略重复触发)。
以上两种情况多用于进行非重要任务防止重复执行,(如:清除无用临时文件,检查某些资源的可用性,数据备份操作等)
if (lock.tryLock()) { //如果已经被lock,则立即返回false不会等待,达到忽略操作的效果
try {
//操作
} finally {
lock.unlock();
}
}
场景2:如果发现该操作已经在执行,则尝试等待一段时间,等待超时则不执行(尝试等待执行)
这种其实属于场景2的改进,等待获得锁的操作有一个时间的限制,如果超时则放弃执行。
用来防止由于资源处理不当长时间占用导致死锁情况(大家都在等待资源,导致线程队列溢出)。
try {
if (lock.tryLock(5, TimeUnit.SECONDS)) { //如果已经被lock,尝试等待5s,看是否可以获得锁,如果5s后仍然无法获得锁则返回false继续执行
try {
//操作
} finally {
lock.unlock();
}
}
} catch (InterruptedException e) {
e.printStackTrace(); //当前线程被中断时(interrupt),会抛InterruptedException
}
场景3:如果发现该操作已经加锁,则等待一个一个加锁(同步执行,类似synchronized)
这种比较常见大家也都在用,主要是防止资源使用冲突,保证同一时间内只有一个操作可以使用该资源。
但与synchronized的明显区别是性能优势(伴随jvm的优化这个差距在减小)。同时Lock有更灵活的锁定方式,公平锁与不公平锁,而synchronized永远是公平的。
这种情况主要用于对资源的争抢(如:文件操作,同步消息发送,有状态的操作等)
ReentrantLock默认情况下为不公平锁
private ReentrantLock lock = new ReentrantLock(); //参数默认false,不公平锁
private ReentrantLock lock = new ReentrantLock(true); //公平锁
try {
lock.lock(); //如果被其它资源锁定,会在此等待锁释放,达到暂停的效果
//操作
} finally {
lock.unlock();
}
不公平锁与公平锁的区别:
公平情况下,操作会排一个队按顺序执行,来保证执行顺序。(会消耗更多的时间来排队)
不公平情况下,是无序状态允许插队,jvm会自动计算如何处理更快速来调度插队。(如果不关心顺序,这个速度会更快)
场景4:可中断锁
synchronized与Lock在默认情况下是不会响应中断(interrupt)操作,会继续执行完。lockInterruptibly()提供了可中断锁来解决此问题。(场景3的另一种改进,没有超时,只能等待中断或执行完毕)
这种情况主要用于取消某些操作对资源的占用。如:(取消正在同步运行的操作,来防止不正常操作长时间占用造成的阻塞)
try {
lock.lockInterruptibly();
//操作
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
lock.unlock();
}
ReentrantLock可重入锁的原理及使用场景的更多相关文章
- ReenTrantLock可重入锁(和synchronized的区别)总结
ReenTrantLock可重入锁(和synchronized的区别)总结 可重入性: 从名字上理解,ReenTrantLock的字面意思就是再进入的锁,其实synchronized关键字所使用的锁也 ...
- ReenTrantLock可重入锁和synchronized的区别
ReenTrantLock可重入锁和synchronized的区别 可重入性: 从名字上理解,ReenTrantLock的字面意思就是再进入的锁,其实synchronized关键字所使用的锁也是可重入 ...
- ReentrantLock可重入锁的理解和源码简单分析
import java.util.concurrent.TimeUnit; import java.util.concurrent.locks.ReentrantLock; /** * @author ...
- JUC 一 ReentrantLock 可重入锁
java.util.concurrent.locks ReentrantLock即可重入锁,实现了Lock和Serializable接口 ReentrantLock和synchronized都是可重入 ...
- ReentrantLock——可重入锁的实现原理
一. 概述 本文首先介绍Lock接口.ReentrantLock的类层次结构以及锁功能模板类AbstractQueuedSynchronizer的简单原理,然后通过分析ReentrantLock的lo ...
- ReentrantLock可重入锁、公平锁非公平锁区别与实现原理
ReentrantLock是lock接口的一个实现类,里面实现了可重入锁和公平锁非公平锁 ReentrantLock公平锁和不公平锁实现原理 公平锁会获取锁时会判断阻塞队列里是否有线程再等待,若有获取 ...
- AQS与重入锁ReetrantLock原理
一.AQS原理 AQS(AbstractQueuedSynchronizer)队列同步器是用来构建锁.同步组件的基础框架. AQS内部通过一个volatile int类型的成员变量state控制同步状 ...
- java ReentrantLock可重入锁功能
1.可重入锁是可以中断的,如果发生了死锁,可以中断程序 //如下程序出现死锁,不去kill jvm无法解决死锁 public class Uninterruptible { public static ...
- 40 多线程(十二)——ReentrantLock 可重入锁
我们使用的synchronized加的锁是可以延续使用的,如下: public void test() { //第一次获得锁 synchronized(this) { while(true) { // ...
随机推荐
- [IR] Concept Search and LSI
基于术语关系的贝叶斯网络信息检索模型扩展研究 LSI 阅读笔记 背景知识 提出一种改进的共现频率法,利用该方法挖掘了索引术语之间的相关关系,将这种相关关系引入信念网络模型,提出了一个具有两层术语节点的 ...
- [OpenCV] Samples 18: Load image and check its attributes
本篇内容: * 图片读取 * 图片高宽 * 图片ROI * 图片缩放 Ref: http://blog.csdn.net/u012005313/article/details/51943442 官网2 ...
- 如何使用点击事件弹出一个url的iframe选项卡
在一些前后端对接的接口中,前端需要根据后端返回进行跳转,但是有时候需要跳转的地址是不固定的,需要前端灵活的根据接口进行跳转,于是,url被放在接口中返回,而前端想打开一个新窗口的话就会比较麻烦,因为c ...
- OpenGL——三维多面体实现
#include<iostream> #include <math.h> #include<Windows.h> #include <GL/glut.h> ...
- day_5.12 py 老王开枪demo
ps:2018-7-24 21:00:04 其实这部分主要是面向对象的复习!而不是面向过程 #!/usr/bin/env/python #-*-coding:utf-8-*- ''' 2018-5-1 ...
- Linux Kafka集群管理工具kafka-manager的安装使用
一.kafka-manager简介 kafka-manager是目前最受欢迎的kafka集群管理工具,最早由雅虎开源,用户可以在Web界面执行一些简单的集群管理操作.具体支持以下内容: 管理多个集群 ...
- linux下内核的配置和编译(2017-1-17)
4.1 什么是内核 内核是操作系统内核的简称,内核负责实现操作系统的核心功能,包括资源管理模块,譬如内 存管理.调度系统等等.内核不包括应用程序.对于 linux 内核而言全世界是有一份内核,我们可 ...
- Inotify+rsync实现实时数据同步
使用rsync可以实现数据同步,但是即使使用crontab定时任务最小执行间隔为1分钟,在数据实时性要求比较高场合需使用inotify+rsync实现实时同步 下载inotify wget https ...
- WPF datagrid 获取行或单格为NULL 问题
datagrid 属性 EnableRowVirtualization 设置为 false 解决...不要问我为什么. 害死我了
- /usr/bin/ld: 找不到 -lmsc----解决方案
系统的默认搜索依赖库路径为,/usr/local/lib 在camkelists.txt文件中对可执行文件链接libmsc.so add_executable(iat_publish src/iat_ ...