loj#2128. 「HAOI2015」数字串拆分 矩阵乘法
目录
题目链接
题解
\(f(s)\)对于\(f(i) = \sum_{j = i - m}^{i - 1}f(j)\)
这个可以用转移矩阵通过矩阵乘法处理出来
预处理出\(A[i][j]\)表示数S为\(j * 10 ^ i\)的转移矩阵
对于g的转移
\(g(i) = \sum_{j = 0}^{i - 1}g(j) * D(j + 1,i)\)
D[i][j]表示第i位到底j位构成的数的f,(转移矩阵
对于g的转移也是需要矩阵的
g(0) = 1也就是{0,0,0,.....,0,1}
代码
#include<map>
#include<vector>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define gc getchar()
#define pc putchar
#define LL long long
inline int read() {
int x = 0,f = 1;
char c = gc;
while(c < '0' || c > '9')c = gc;
while(c <= '9' && c >= '0') x = x * 10 + c - '0',c = gc;
return x * f;
}
void print(int x) {
if(x < 0) {
pc('-');
x = -x;
}
if(x >= 10) print(x / 10);
pc(x % 10 + '0');
}
const int maxn = 507;
int n,m;
const int mod = 998244353;
struct Ma {
int a[6][6];
Ma() { memset(a,0,sizeof a); }
Ma operator * (const Ma & t)const {
Ma ret;
memset(ret.a,0,sizeof ret.a);
for(int i = 1;i <= m;++ i)
for(int j = 1;j <= m;++ j)
for(int k = 1;k <= m;++ k)
(ret.a[i][j] += 1ll * a[i][k] * t.a[k][j] % mod) %= mod;
return ret;
}
Ma operator + (const Ma &k)const {
Ma ret;
memset(ret.a,0,sizeof ret.a);
for(int i = 1;i <= m;++ i)
for(int j = 1;j <= m;++ j)
ret.a[i][j] = (a[i][j] + k.a[i][j]) % mod;
return ret;
}
} A[maxn][10],f[maxn];
char s[maxn];
int main() {
scanf("%s",s + 1);
n = strlen(s + 1);
m = read();
for(int i = 1;i <= m;++ i)
A[0][0].a[i][i] = 1 ,
A[0][1].a[i][m] = 1;
for(int i = 1;i < m;++ i)
A[0][1].a[i + 1][i] = 1;
for(int i = 2;i <= 9;++ i)
A[0][i] = A[0][i - 1] * A[0][1];
for(int i = 1;i <= n;++ i) { //十进制快速幂
A[i][0] = A[0][0];
A[i][1] = A[i - 1][9] * A[i - 1][1];
for(int j = 2;j <= 9;++ j)
A[i][j] = A[i][j - 1] * A[i][1];
}
f[0].a[1][m] = 1;
Ma now;
for(int i = 1;i <= n;++ i) {
now = A[0] [s[i] - '0'];
for(int j = i - 1;j >= 0;-- j) {
f[i] = f[i] + (f[j] * now);
if(j) now = A[i - j][s[j] - '0'] * now;
}
}
print(f[n].a[1][m]);
pc('\n');
return 0;
}
loj#2128. 「HAOI2015」数字串拆分 矩阵乘法的更多相关文章
- 【LOJ】#2128. 「HAOI2015」数字串拆分
题解 题中给的函数可以用矩阵快速幂递推 我们记一个数组dp[i](这个数组每个元素是一个矩阵)表示从1到i所有的数字经过拆分矩阵递推的加和 转移方法是 \(dp[i] = \sum_{j = 0}^{ ...
- loj#2002. 「SDOI2017」序列计数(dp 矩阵乘法)
题意 题目链接 Sol 质数的限制并没有什么卵用,直接容斥一下:答案 = 忽略质数总的方案 - 没有质数的方案 那么直接dp,设\(f[i][j]\)表示到第i个位置,当前和为j的方案数 \(f[i ...
- loj #2006. 「SCOI2015」小凸玩矩阵
#2006. 「SCOI2015」小凸玩矩阵 题目描述 小凸和小方是好朋友,小方给小凸一个 N×M N \times MN×M(N≤M N \leq MN≤M)的矩阵 A AA,要求小凸从其中选出 ...
- LOJ#2127「HAOI2015」按位或
用$ Min-Max$容斥之后要推的东西少了好多 无耻的用实数快读抢了BZOJ.Luogu.LOJ三个$ OJ$的Rank 1 即将update:被STO TXC OTZ超了QAQ 题意:集合$ [0 ...
- LOJ#2083. 「NOI2016」优秀的拆分
$n \leq 30000$的字符串,问其所有子串的所有AABB形式的拆分有多少种.$t \leq 10$组询问. $n^3$过80,$n^2$过95,鬼去写正解.. $n^2$:先枚举一次算每个位置 ...
- 「BZOJ2510」弱题(矩阵乘法,降维)
有M个球,一开始每个球均有一个初始标号,标号范围为1-N且为整数,标号为i的球有ai个,并保证Σai = M. 每次操作等概率取出一个球(即取出每个球的概率均为1/M),若这个球标号为k(k < ...
- loj#2013. 「SCOI2016」幸运数字 点分治/线性基
题目链接 loj#2013. 「SCOI2016」幸运数字 题解 和树上路径有管...点分治吧 把询问挂到点上 求出重心后,求出重心到每个点路径上的数的线性基 对于重心为lca的合并寻味,否则标记下传 ...
- Loj #3089. 「BJOI2019」奥术神杖
Loj #3089. 「BJOI2019」奥术神杖 题目描述 Bezorath 大陆抵抗地灾军团入侵的战争进入了僵持的阶段,世世代代生活在 Bezorath 这片大陆的精灵们开始寻找远古时代诸神遗留的 ...
- Loj #3055. 「HNOI2019」JOJO
Loj #3055. 「HNOI2019」JOJO JOJO 的奇幻冒险是一部非常火的漫画.漫画中的男主角经常喜欢连续喊很多的「欧拉」或者「木大」. 为了防止字太多挡住漫画内容,现在打算在新的漫画中用 ...
随机推荐
- 【转】Python介绍
[转]Python介绍 本节内容 Python简史 Python是一门什么样的语言? Python的优点与缺点 Python解释器 一.Python简史 历史背景 在20世纪80年代,IBM和苹果已经 ...
- Hard Negative Mning
对于hard negative mining的解释,引用一波知乎: 链接:https://www.zhihu.com/question/46292829/answer/235112564来源:知乎 先 ...
- 提高CPU使用率100%
直接上脚本: #!/bin/bash while true do echo 2^2^20 | bc & >/dev/null done 查看CPU使用率用top命令即可 释放CPU: p ...
- kset学习demo以及Oops反汇编objdump调试例子【原创】
写一个main.c gcc -c -g main.c objdump -S main.o > b.txt arm-none-linux-gnueabi-gcc -c -g a.c arm-non ...
- route 的标志位
linux下利用route命令查看当前路由信息时,会打印如下信息: root@root:/# route Kernel IP routing tableDestination Gateway ...
- javascript 练习题目答案
//廖雪峰的博客的这个教程的答案//https://www.liaoxuefeng.com/wiki/001434446689867b27157e896e74d51a89c25cc8b43bdb300 ...
- VS2017项目程序打包成.msi或者.exe
VS2017项目程序打包成.msi或者.exe 1.安装打包插件:Microsoft Visual Studio 2017 Installer Projects 打开vs2017 ,选择 工具 --& ...
- 造轮子和用轮子:快速入门JavaScript模块化
造轮子和用轮子:快速入门JavaScript模块化 前言 都说“不重复造轮子”,就像iPhone——它除了打电话还可以播放音乐——但是工程师不用从零开始做一个音乐播放功能,也许只要在iPhone的系统 ...
- 搭建ssh框架项目(一)
一.创建web项目 二.导入jar包 三.创建数据库(MySQL) 四.建立javaBean对象(ElecText.java),属于持久层对象(PO对象) package com.cppdy.ssh. ...
- 【ES】学习5-全文搜索
全文搜索两个最重要的方面是:相关性, 分析. 一旦谈论相关性或分析这两个方面的问题时,我们所处的语境是关于查询的而不是过滤. match:单个词查询 GET /my_index/my_type/_se ...