Pytorch 各种奇葩古怪的使用方法
h1 { counter-reset: h2counter; }
h2 { counter-reset: h3counter; }
h3 { counter-reset: h4counter; }
h4 { counter-reset: h5counter; }
h5 { counter-reset: h6counter; }
h6 { }
h2:before {
counter-increment: h2counter;
content: counter(h2counter) ".\0000a0\0000a0";
}
h3:before {
counter-increment: h3counter;
content: counter(h2counter) "."
counter(h3counter) ".\0000a0\0000a0";
}
h4:before {
counter-increment: h4counter;
content: counter(h2counter) "."
counter(h3counter) "."
counter(h4counter) ".\0000a0\0000a0";
}
h5:before {
counter-increment: h5counter;
content: counter(h2counter) "."
counter(h3counter) "."
counter(h4counter) "."
counter(h5counter) ".\0000a0\0000a0";
}
h6:before {
counter-increment: h6counter;
content: counter(h2counter) "."
counter(h3counter) "."
counter(h4counter) "."
counter(h5counter) "."
counter(h6counter) ".\0000a0\0000a0";
}
不间断更新。。。
增减layer
增加layer
增加layer很方便,可以使用model.add_module('layer name', layer)。
删减layer
删减layer很少用的到,之所以我会有这么一个需求,是因为我需要使用vgg做迁移学习,而且需要修改最后的输出。
而vgg由两个部分组成:features和classifier,这两个部分都是torch.nn.Sequential,所以不能单独对其中某一层做修改。
而如果对整个Sequential做修改,那么这个模型的参数会被初始化,而我又需要保留这些参数,所以才想到是否有办法把最后一层fc删掉,重新再填加一个不就行了?具体方法如下:
以vgg16为例,假设我们现在只需要对classifier的最后一层全连接层的输出做修改:
model = models.vgg16(pretrained=True)
先看一下未做修改之前的classifier的参数:

- 截取要修改的layer之前的网络
removed = list(model.classifier.children())[:-1]
model.classifier = torch.nn.Sequential(*removed)
- 添加fc层
model.add_module('fc', torch.nn.Linear(4096, out_num)) # out_num是你希望输出的数量
此时我们看一下model以及classifier的参数有什么变化:


这达到了我预期的效果。
Pytorch 各种奇葩古怪的使用方法的更多相关文章
- 字符串:各种奇葩的内置方法 - 零基础入门学习Python014
字符串:各种奇葩的内置方法 让编程改变世界 Change the world by program 字符串:各种奇葩的内置方法 或许现在又回过头来谈字符串,有些朋友可能会觉得没必要,也有些朋友会觉得不 ...
- 零基础入门学习Python(14)--字符串:各种奇葩的内置方法
前言 这节课我们回过头来,再谈一下字符串,或许我们现在再来谈字符串,有些朋友可能觉得没必要了,甚至有些朋友就会觉得,不就是字符串吗,哥闭着眼也能写出来,那其实关于字符串还有很多你不知道的秘密哦.由于字 ...
- pytorch 建立模型的几种方法
利用pytorch来构建网络模型,常用的有如下三种方式 前向传播网络具有如下结构: 卷积层-->Relu层-->池化层-->全连接层-->Relu层 对各Conv2d和Line ...
- pytorch设置多GPU运行的方法
1.DataParallel layers (multi-GPU, distributed) 1)DataParallel CLASS torch.nn.DataParallel(module, de ...
- Python14之字符串(各种奇葩的内置方法)
一.字符串的分片操作 其分片操作和列表和元组一样 str1 = 'keshengtao' str1[2:6] 'shen' str1[:] 'keshengtao' str1[:4] 'kesh' 二 ...
- Pytorch加载模型推荐的方法
https://stackoverflow.com/questions/42703500/best-way-to-save-a-trained-model-in-pytorch
- pytorch 创建tensor的几种方法
tensor默认是不求梯度的,对应的requires_grad是False. 1.指定数值初始化 import torch #创建一个tensor,其中shape为[2] tensor=torch.T ...
- pytorch 中交叉熵损失实现方法
- Pytorch划分数据集的方法
之前用过sklearn提供的划分数据集的函数,觉得超级方便.但是在使用TensorFlow和Pytorch的时候一直找不到类似的功能,之前搜索的关键字都是"pytorch split dat ...
随机推荐
- BZOJ4771七彩树——可持久化线段树+set+树链的并+LCA
给定一棵n个点的有根树,编号依次为1到n,其中1号点是根节点.每个节点都被染上了某一种颜色,其中第i个节 点的颜色为c[i].如果c[i]=c[j],那么我们认为点i和点j拥有相同的颜色.定义dept ...
- BZOJ5312 冒险(势能线段树)
BZOJ题目传送门 表示蒟蒻并不能一眼看出来这是个势能线段树. 不过仔细想想也并非难以理解,感性理解一下,在一个区间里又与又或,那么本来不相同的位也会渐渐相同,线段树每个叶子节点最多修改\(\log ...
- Python网络爬虫:空姐网、糗百、xxx结果图与源码
如前面所述,我们上手写了空姐网爬虫,糗百爬虫,先放一下传送门: Python网络爬虫requests.bs4爬取空姐网图片Python爬虫框架Scrapy之爬取糗事百科大量段子数据Python爬虫框架 ...
- 自学Zabbix5.1 zabbix maintenance维护周期
自学Zabbix5.1 zabbix maintenance维护周期 1. 概述 你可以定义维护周期在主机或主机组里.这里有2种维护状态: 依旧收集数据 继续对目标的监控数据的收集 暂停收集数据 ...
- 【转】typedef和#define的用法与区别
typedef和#define的用法与区别 一.typedef的用法 在C/C++语言中,typedef常用来定义一个标识符及关键字的别名,它是语言编译过程的一部分,但它并不实际分配内存空间,实例像: ...
- MD5 SHA1 CRC32
md5: import hashlib md5 = hashlib.md5() md5.update(bytes('http://www.baidu.com',encoding="utf-8 ...
- Azure HDInsight 上的 Spark 群集配合自定义的Python来分析网站日志
一.前言:本文是个实践博客,演示如何结合使用自定义库和 HDInsight 上的 Spark 来分析日志数据. 我们使用的自定义库是一个名为 iislogparser.py的 Python 库. 每步 ...
- HDU 1029 Ignatius and the Princess IV / HYSBZ(BZOJ) 2456 mode(思维题,~~排序?~~)
HDU 1029 Ignatius and the Princess IV (思维题,排序?) Description "OK, you are not too bad, em... But ...
- 洛谷P3953 逛公园
DP+图论大毒瘤. 推荐这个博客. 先跑两遍最短路,搞掉一些无用点. 然后选出最短路上的边,做拓扑排序. 然后每层DP. 具体看代码. 用到的数组较多,记得清空. #include <cstdi ...
- 洛谷P1044 栈
之前看这题还是一头雾水,现在看:啊啊啊lydnb! 思考了一段时间,发现可以用DP. 令f[i]表示有i辆车时的方案数. 我一开始考虑的是在后面加车,可是这样搞不出状态转移方程来. 然后我考虑从前面加 ...