MXNET:深度学习计算-模型构建
进入更深的层次:模型构造、参数访问、自定义层和使用 GPU。
模型构建
在多层感知机的实现中,我们首先构造 Sequential 实例,然后依次添加两个全连接层。其中第一层的输出大小为 256,即隐藏层单元个数是 256;第二层的输出大小为 10,即输出层单元个数是 10。
我们之前都是用了 Sequential 类来构造模型。这里我们另外一种基于 Block 类的模型构造方法,它让构造模型更加灵活,也将让你能更好的理解 Sequential 的运行机制。
继承 Block 类来构造模型
Block 类是 gluon.nn 里提供的一个模型构造类,我们可以继承它来定义我们想要的模型。例如,我们在这里构造一个同前提到的相同的多层感知机。这里定义的 MLP 类重载了 Block 类的两个函数:init 和 forward.
from mxnet import nd
from mxnet.gluon import nn
class MLP(nn.Block):
# 声明带有模型参数的层,这里我们声明了两个全链接层。
def __init__(self, **kwargs):
# 调用 MLP 父类 Block 的构造函数来进行必要的初始化。这样在构造实例时还可以指定其他函数参数,例如后面将介绍的模型参数 params。
super(MLP, self).__init__(**kwargs)
# 隐藏层。
self.hidden = nn.Dense(256, activation='relu')
# 输出层。
self.output = nn.Dense(10)
# 定义模型的前向计算,即如何根据输出计算输出。
def forward(self, x):
return self.output(self.hidden(x))
我们可以实例化 MLP 类得到 net
x = nd.random.uniform(shape=(2,20))
net = MLP()
net.initialize()
net(x)
其中,net(x) 会调用了 MLP 继承至 Block 的 call 函数,这个函数将调用 MLP 定义的 forward 函数来完成前向计算。
我们无需在这里定义反向传播函数,系统将通过自动求导,来自动生成 backward 函数。
注意到我们不是将 Block 叫做层或者模型之类的名字,这是因为它是一个可以自由组建的部件。它的子类既可以一个层,例如 Gluon 提供的 Dense 类,也可以是一个模型,我们定义的 MLP 类,或者是模型的一个部分,例如我们会在之后介绍的 ResNet 的残差块。
Sequential 类继承自 Block 类
当模型的前向计算就是简单串行计算模型里面各个层的时候,我们可以将模型定义变得更加简单,这个就是 Sequential 类的目的,它通过 add 函数来添加 Block 子类实例,前向计算时就是将添加的实例逐一运行。下面我们实现一个跟 Sequential 类有相同功能的类,这样你可以看的更加清楚它的运行机制。
class MySequential(nn.Block):
def __init__(self, **kwargs):
super(MySequential, self).__init__(**kwargs)
def add(self, block):
# block 是一个 Block 子类实例,假设它有一个独一无二的名字。我们将它保存在Block 类的成员变量 _children 里,其类型是 OrderedDict.
#当调用initialize 函数时,系统会自动对 _children 里面所有成员初始化。
self._children[block.name] = block
def forward(self, x):
# OrderedDict 保证会按照插入时的顺序遍历元素。
for block in self._children.values():
x = block(x)
return x
使用:
net = MySequential()
net.add(nn.Dense(256, activation='relu'))
net.add(nn.Dense(10))
net.initialize()
net(x)
构造复杂的模型
我们构造一个稍微复杂点的网络。在这个网络中,我们通过 get_constant 函数创建训练中不被迭代的参数,即常数参数。在前向计算中,除了使用创建的常数参数外,我们还使用 NDArray 的函数和 Python 的控制流,并多次调用同一层。
class FancyMLP(nn.Block):
def __init__(self, **kwargs):
super(FancyMLP, self).__init__(**kwargs)
# 使用 get_constant 创建的随机权重参数不会在训练中被迭代(即常数参数)。
self.rand_weight = self.params.get_constant(
'rand_weight', nd.random.uniform(shape=(20, 20)))
self.dense = nn.Dense(20, activation='relu')
def forward(self, x):
x = self.dense(x)
# 使用创建的常数参数,以及 NDArray 的 relu 和 dot 函数。
x = nd.relu(nd.dot(x, self.rand_weight.data()) + 1)
# 重用全连接层。等价于两个全连接层共享参数。
x = self.dense(x)
# 控制流,这里我们需要调用 asscalar 来返回标量进行比较。
while x.norm().asscalar() > 1:
x /= 2
if x.norm().asscalar() < 0.8:
x *= 10
return x.sum()
使用:
net = FancyMLP()
net.initialize()
net(x)
由于 FancyMLP 和 Sequential 都是 Block 的子类,我们可以嵌套调用他们。
class NestMLP(nn.Block):
def __init__(self, **kwargs):
super(NestMLP, self).__init__(**kwargs)
self.net = nn.Sequential()
self.net.add(nn.Dense(64, activation='relu'),
nn.Dense(32, activation='relu'))
self.dense = nn.Dense(16, activation='relu')
def forward(self, x):
return self.dense(self.net(x))
net = nn.Sequential()
net.add(NestMLP(), nn.Dense(20), FancyMLP())
net.initialize()
net(x)
MXNET:深度学习计算-模型构建的更多相关文章
- MXNET:深度学习计算-模型参数
我们将深入讲解模型参数的访问和初始化,以及如何在多个层之间共享同一份参数. 之前我们一直在使用默认的初始函数,net.initialize(). from mxnet import init, nd ...
- 深度学习之TensorFlow构建神经网络层
深度学习之TensorFlow构建神经网络层 基本法 深度神经网络是一个多层次的网络模型,包含了:输入层,隐藏层和输出层,其中隐藏层是最重要也是深度最多的,通过TensorFlow,python代码可 ...
- NVIDIA GPUs上深度学习推荐模型的优化
NVIDIA GPUs上深度学习推荐模型的优化 Optimizing the Deep Learning Recommendation Model on NVIDIA GPUs 推荐系统帮助人在成倍增 ...
- MXNet深度学习库简介
MXNet深度学习库简介 摘要: MXNet是一个深度学习库, 支持C++, Python, R, Scala, Julia, Matlab以及JavaScript等语言; 支持命令和符号编程; 可以 ...
- [笔记] 基于nvidia/cuda的深度学习基础镜像构建流程 V0.2
之前的[笔记] 基于nvidia/cuda的深度学习基础镜像构建流程已经Out了,以这篇为准. 基于NVidia官方的nvidia/cuda image,构建适用于Deep Learning的基础im ...
- mxnet深度学习实战学习笔记-9-目标检测
1.介绍 目标检测是指任意给定一张图像,判断图像中是否存在指定类别的目标,如果存在,则返回目标的位置和类别置信度 如下图检测人和自行车这两个目标,检测结果包括目标的位置.目标的类别和置信度 因为目标检 ...
- 深度学习VGG16模型核心模块拆解
原文连接:https://blog.csdn.net/qq_40027052/article/details/79015827 注:这篇文章是上面连接作者的文章.在此仅作学习记录作用. 如今深度学习发 ...
- Caffe深度学习计算框架
Caffe | Deep Learning Framework是一个清晰而高效的深度学习框架,其作者是博士毕业于UC Berkeley的 Yangqing Jia,目前在Google工作.Caffe是 ...
- 在排序模型方面,点评搜索也经历了业界比较普遍的迭代过程:从早期的线性模型LR,到引入自动二阶交叉特征的FM和FFM,到非线性树模型GBDT和GBDT+LR,到最近全面迁移至大规模深度学习排序模型。
https://mp.weixin.qq.com/s/wjgoH6-eJQDL1KUQD3aQUQ 大众点评搜索基于知识图谱的深度学习排序实践 原创: 非易 祝升 仲远 美团技术团队 前天
随机推荐
- HDU 3625 Examining the Rooms【第一类斯特灵数】
<题目链接> <转载于 >>> > 题目大意:有n个锁着的房间和对应n扇门的n把钥匙,每个房间内有一把钥匙.你可以破坏一扇门,取出其中的钥匙,然后用取出钥匙打 ...
- linux中top命令使用及查看tcp连接
Linux top命令 介绍:top命令是Linux下常用的性能分析工具,能够实时显示系统中各个进程的资源占用状况,Linux top命令用于实时显示 process 的动态,即可以通过用户按键来不断 ...
- VB.NET只允许打开一个实例
If UBound(Diagnostics.Process.GetProcessesByName(Diagnostics.Process.GetCurrentProcess.ProcessName)) ...
- Xamarin Android组件篇教程RecylerView动画组件RecylerViewAnimators(1)
Xamarin Android组件篇教程RecylerView动画组件RecylerViewAnimators(1) RecyclerView是比ListView和GridView更为强大的布局视图, ...
- 潭州课堂25班:Ph201805201 第九课 函数作用域和匿名函数 (课堂笔记)
匿名函数: lambda obj:str(obj).isdigit 语法规则: lambda 参数:表达式 列: ma1 = map( lambda obj:'binbin','abcdef' ) ...
- Kaggle Titanic solution 纯规则学习
其实就是把train.csv拿出来看了看,找了找规律,调了调参数而已. 找到如下规律: 1.男的容易死,女的容易活 2.一等舱活,三等舱死 3.老人死,小孩活 4.兄弟姐妹多者死 5.票价高的活 6. ...
- How to modify analog output range of Arduino Due
Voltage Translation for Analog to Digital Interface ADC How to modify analog output range of Arduino ...
- [前端] 记录工作中遇到的各种问题(Bug,总结,记录)
最近一年,在开发实践过程中遇到了不少问题,大多都能得到解决 部分知其原理,部分只能做到解决问题,而半年前遇到的问题,或多或少都忘得差不多了 是该记录一下一些问题,防止再遇到就得再查资料了 1. 浏览器 ...
- Keras模型的导出和pb文件的转换
Keras有两种类型的模型,序贯模型(Sequential)和函数式模型(Model),函数式模型应用更为广泛,序贯模型是函数式模型的一种特殊情况. 两类模型有一些方法是相同的: model.summ ...
- Fibratus:一款功能强大的Windows内核漏洞利用和跟踪工具
今天给大家介绍的是一款名叫Fibratus的开源工具,广大研究人员可以使用这款功能强大的工具来进行Windows内核漏洞利用.挖掘与跟踪. Fibratus这款工具能够捕捉到绝大多数的Windows内 ...