UVA11417 GCD
题目地址
题解
先讨论任何没有限制的情况
\begin{aligned}
&\sum_{i=1}^{n}\sum_{j=1}^{n}gcd(i,j)\\
&=\sum_{k=1}^{n}k\sum_{i=1}^{n}\sum_{j=1}^{n}[gcd(i,j)=k]\\
&=\sum_{k=1}^{n}k\sum_{i=1}^{\lfloor \frac{n}{k}\rfloor }\sum_{j=1}^{\lfloor \frac{n}{k}\rfloor }[gcd(i,j)=1]\\
&=\sum_{k=1}^{n}k\sum_{i=1}^{\lfloor \frac{n}{k}\rfloor }\sum_{j=1}^{\lfloor \frac{n}{k}\rfloor }\sum_{d|gcd(i,j)}\mu(d)\\
&=\sum_{k=1}^{n}k\sum_{d=1}^{n}{\mu(d)\lfloor \frac{n}{kd}\rfloor^2}
\end{aligned}
}
\]
因为这个公式里面,我们对于所有的(i,j),同时也算了(j,i)
显然gcd(i,j)=gcd(j,i)
所以只需要除以2即可
但是因为对于所有的(i,i)。我们只算了一次,因为这个在答案中不算进去,所以我们可以直接减掉再除以2
所以最后的答案
ANS= \frac{\sum_{k=1}^{n}k\sum_{d=1}^{n}{\mu(d)\lfloor \frac{n}{kd}\rfloor^2}-\sum_{i=1}^{n}i}{2}
\]
用容斥的思想来理解就很简单了
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define N 501
int n;
int vis[N], p[N], cnt = 0, mu[N], sum[N];
void init() {
mu[1] = sum[1] = 1;
for(int i = 2; i < N; ++i) {
if(!vis[i]) {p[++cnt] = i; mu[i] = -1;}
for(int j = 1; j <= cnt && p[j] * i < N; ++j) {
vis[p[j] * i] = 1;
if(i % p[j] == 0) break;
mu[i * p[j]] -= mu[i];
}
sum[i] = sum[i - 1] + mu[i];
}
}
int calc(int m, int k) {
int ans = 0;
for(int l = 1, r; l <= m; l = r + 1) {
r = m / (m / l);
ans += (n / l / k) * (n / l / k) * (sum[r] - sum[l - 1]);
}
return ans;
}
int main() {
init();
while(scanf("%d", &n) == 1 && n) {
int ans = 0;
for(int i = 1; i <= n; ++i) {
ans += i * calc(n, i);
}
printf("%d\n", (ans - (n * (n + 1)) / 2) / 2);
}
return 0;
}
UVA11417 GCD的更多相关文章
- 【洛谷 UVA11417】 GCD(欧拉函数)
我们枚举所有gcd \(k\),求所有\(gcd=k\)的数对,记作\(f(k)\),那么\(ans=\sum_{i=1}^{n}(f(i)-1)*i\).为什么减1呢,观察题目,发现\(j=i+1\ ...
- 洛谷 P2398 GCD SUM || uva11417,uva11426,uva11424,洛谷P1390,洛谷P2257,洛谷P2568
https://www.luogu.org/problemnew/show/P2398 $原式=\sum_{k=1}^n(k\sum_{i=1}^n\sum_{j=1}^n[(i,j)=k])$ 方法 ...
- 关于gcd的四道题
T1:bzoj2705 题目描述: 给定一个n求\(\sum\limits_{i=1}^ngcd(i,n)\) 因为n太大,所以O(n)的做法肯定不行,然后就去想根号的方法. \[\sum\limit ...
- Objective-C三种定时器CADisplayLink / NSTimer / GCD的使用
OC中的三种定时器:CADisplayLink.NSTimer.GCD 我们先来看看CADiskplayLink, 点进头文件里面看看, 用注释来说明下 @interface CADisplayLin ...
- iOS 多线程之GCD的使用
在iOS开发中,遇到耗时操作,我们经常用到多线程技术.Grand Central Dispatch (GCD)是Apple开发的一个多核编程的解决方法,只需定义想要执行的任务,然后添加到适当的调度队列 ...
- 【swift】BlockOperation和GCD实用代码块
//BlockOperation // // ViewController.swift import UIKit class ViewController: UIViewController { @I ...
- 修改版: 小伙,多线程(GCD)看我就够了,骗你没好处!
多线程(英语:multithreading),是指从软件或者硬件上实现多个线程并发执行的技术.具有多线程能力的计算机因有硬件支持而能够在同一时间执行多于一个线程,进而提升整体处理性能.具有这种能力的系 ...
- GCD的相关函数使用
GCD 是iOS多线程实现方案之一,非常常用 英文翻译过来就是伟大的中枢调度器,也有人戏称为是牛逼的中枢调度器 是苹果公司为多核的并行运算提出的解决方案 1.一次性函数 dispatch_once 顾 ...
- hdu1695 GCD(莫比乌斯反演)
题意:求(1,b)区间和(1,d)区间里面gcd(x, y) = k的数的对数(1<=x<=b , 1<= y <= d). 知识点: 莫比乌斯反演/*12*/ 线性筛求莫比乌 ...
随机推荐
- RAMPS1.4 3D打印控制板:软件下载\连接\安装\测试
RAMPS1.4 3D打印控制板:软件下载\连接\安装\测试 特别说明: 电源接反,电机驱动板接反将有可能烧毁芯片和电路,请再三确认后再进行通电. 如何使用: 1.需要用到的模块或器件: Arduin ...
- Palindrome Bo (预处理 + 区间DP)
先进行离散化,然后再预处理出所有位置的下一个元素,做好这一步对时间的优化非常重要. 剩下的就是一般的DP了.区间DP #include<bits/stdc++.h> using names ...
- PCH 文件 和 ProjectName-Bridging-Header 配置
1.简介 PCH文件是Xcode编程中全局引用共享的文件.可以在这里引入头文件或者宏定义来方便程序中多个文件访问. 2.PCH文件创建 打开工程 New File… -> iOS Other - ...
- 关于在搜索栏的一些小bug
问题:我们在使用input标签和button按钮写搜索框的时候,书写在两行的时候会有缝隙,其次,input标签如果用大的div括起来,里面依然会显示边框. 解决方法:1.关于input标签,我们将属性 ...
- jsp页面报错 javax.servlet cannot be resolved to a type
需要引入 Tomcat 中的两个 jar 包: servlet-api jsp-api.jar
- JVM探秘4---垃圾收集器介绍
Java虚拟机有很多垃圾收集器 下面先来了解HotSpot虚拟机中的7种垃圾收集器:Serial.ParNew.Parallel Scavenge.Serial Old.Parallel Old.CM ...
- Linux基础命令---ping
ping ping指令可以发送ICMP请求到目标地址,如果网络功能正常,目标主机会给出回应信息.ping使用ICMP协议强制发送ECHO_REQUEST报文到目标主机,从主机或网关获取ICMP ECH ...
- php冒泡排序实现方法,传入几个数字排序后 输出实战例子
php冒泡排序实现方法,传入几个数字排序后 输出实战例子 算法和数据结构是一个编程工作人员的内功.四种入门级排序算法: 冒泡排序.选择排序.插入排序.快速排序. 一.冒泡排序 原理:对一组数据,比较相 ...
- Step1:SQL Server 复制介绍
一.本文所涉及的内容(Contents) 本文所涉及的内容(Contents) 前言(Introduction) 复制逻辑结构图(Construction) 系列文章索引(Catalog) 总结&am ...
- webpack 创建vue项目过程中遇到的问题和解决方法
目录 1 webpack简介 2 webpack实现多个输入输出多个html 3 webpack 中的module下rules 下的use和loader选项 4 webpack 文件更新,如何使页面 ...