TensorFlow:tf.nn.max_pool实现池化操作
tf.nn.max_pool(value, ksize, strides, padding, name=None)
参数是四个,和卷积很类似:
第一个参数value:需要池化的输入,一般池化层接在卷积层后面,所以输入通常是feature map,依然是[batch, height, width, channels]这样的shape
第二个参数ksize:池化窗口的大小,取一个四维向量,一般是[1, height, width, 1],因为我们不想在batch和channels上做池化,所以这两个维度设为了1
第三个参数strides:和卷积类似,窗口在每一个维度上滑动的步长,一般也是[1, stride,stride, 1]
第四个参数padding:和卷积类似,可以取'VALID' 或者'SAME'
返回一个Tensor,类型不变,shape仍然是[batch, height, width, channels]这种形式
示例源码:
假设有这样一张图,双通道
第一个通道:

第二个通道:

用程序去做最大值池化:
import tensorflow as tf a=tf.constant([
[[1.0,2.0,3.0,4.0],
[5.0,6.0,7.0,8.0],
[8.0,7.0,6.0,5.0],
[4.0,3.0,2.0,1.0]],
[[4.0,3.0,2.0,1.0],
[8.0,7.0,6.0,5.0],
[1.0,2.0,3.0,4.0],
[5.0,6.0,7.0,8.0]]
]) a=tf.reshape(a,[1,4,4,2]) pooling=tf.nn.max_pool(a,[1,2,2,1],[1,1,1,1],padding='VALID')
with tf.Session() as sess:
print("image:")
image=sess.run(a)
print (image)
print("reslut:")
result=sess.run(pooling)
print (result)
这里步长为1,窗口大小2×2,输出结果:
image:
[[[[ 1. 2.]
[ 3. 4.]
[ 5. 6.]
[ 7. 8.]] [[ 8. 7.]
[ 6. 5.]
[ 4. 3.]
[ 2. 1.]] [[ 4. 3.]
[ 2. 1.]
[ 8. 7.]
[ 6. 5.]] [[ 1. 2.]
[ 3. 4.]
[ 5. 6.]
[ 7. 8.]]]]
reslut:
[[[[ 8. 7.]
[ 6. 6.]
[ 7. 8.]] [[ 8. 7.]
[ 8. 7.]
[ 8. 7.]] [[ 4. 4.]
[ 8. 7.]
[ 8. 8.]]]]
池化后的图就是:


证明了程序的结果是正确的。
我们还可以改变步长
pooling=tf.nn.max_pool(a,[1,2,2,1],[1,2,2,1],padding='VALID')
最后的result就变成:
reslut:
[[[[ 8. 7.]
[ 7. 8.]] [[ 4. 4.]
[ 8. 8.]]]]
TensorFlow:tf.nn.max_pool实现池化操作的更多相关文章
- 深度学习原理与框架-Tensorflow卷积神经网络-卷积神经网络mnist分类 1.tf.nn.conv2d(卷积操作) 2.tf.nn.max_pool(最大池化操作) 3.tf.nn.dropout(执行dropout操作) 4.tf.nn.softmax_cross_entropy_with_logits(交叉熵损失) 5.tf.truncated_normal(两个标准差内的正态分布)
1. tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME') # 对数据进行卷积操作 参数说明:x表示输入数据,w表示卷积核, stride ...
- 【TensorFlow】tf.nn.max_pool实现池化操作
max pooling是CNN当中的最大值池化操作,其实用法和卷积很类似 有些地方可以从卷积去参考[TensorFlow]tf.nn.conv2d是怎样实现卷积的? tf.nn.max_pool(va ...
- 深度学习原理与框架-Tensorflow卷积神经网络-cifar10图片分类(代码) 1.tf.nn.lrn(局部响应归一化操作) 2.random.sample(在列表中随机选值) 3.tf.one_hot(对标签进行one_hot编码)
1.tf.nn.lrn(pool_h1, 4, bias=1.0, alpha=0.001/9.0, beta=0.75) # 局部响应归一化,使用相同位置的前后的filter进行响应归一化操作 参数 ...
- tf入门-池化函数 tf.nn.max_pool 的介绍
转载自此大神 http://blog.csdn.net/mao_xiao_feng/article/details/53453926 max pooling是CNN当中的最大值池化操作,其实用法和卷积 ...
- CNN之池化层tf.nn.max_pool | tf.nn.avg_pool | tf.reduce_mean | padding的规则解释
摘要:池化层的主要目的是降维,通过滤波器映射区域内取最大值.平均值等操作. 均值池化:tf.nn.avg_pool(input,ksize,strides,padding) 最大池化:tf.nn.ma ...
- tf.nn.max_pool 池化
tf.nn.max_pool( value, ksize, strides, padding, data_format='NHWC', name=None ) 参数: value:由data_form ...
- tensorflow max_pool(最大池化)应用
1.最大池化 max pooling是CNN当中的最大值池化操作,其实用法和卷积很类似. tf.nn.max_pool(value, ksize, strides, padding, name=Non ...
- 第十四节,TensorFlow中的反卷积,反池化操作以及gradients的使用
反卷积是指,通过测量输出和已知输入重构未知输入的过程.在神经网络中,反卷积过程并不具备学习的能力,仅仅是用于可视化一个已经训练好的卷积神经网络,没有学习训练的过程.反卷积有着许多特别的应用,一般可以用 ...
- TF-池化函数 tf.nn.max_pool 的介绍
转载自此大神 http://blog.csdn.net/mao_xiao_feng/article/details/53453926 max pooling是CNN当中的最大值池化操作,其实用法和卷积 ...
随机推荐
- nodejs的express框架(request,response方法汇总)
Response 对象 - response 对象表示 HTTP 响应,即在接收到请求时向客户端发送的 HTTP 响应数据.常见属性有: res.app:同req.app一样 res.append() ...
- python 实现图的深度优先和广度优先搜索
在介绍 python 实现图的深度优先和广度优先搜索前,我们先来了解下什么是"图". 1 一些定义 顶点 顶点(也称为"节点")是图的基本部分.它可以有一个名称 ...
- ldd 查看程序依赖库
ldd 查看程序依赖库 https://linuxtools-rst.readthedocs.io/zh_CN/latest/tool/ldd.html
- xdoj-1319 求树上任意一点的最大距离----利用树的直径
1 #include <bits/stdc++.h> using namespace std; ; vector < vector <int> > g(N); in ...
- CCF-棋局评估 201803-04(版本 2.0)------(之前写了一个臃肿的1.0版 ,还沾沾自喜 233)
核心 : 博弈搜索树 双方得分互为相反数 dfs (x,y,player): 玩家player下完(x,y)之后的得分最大值 易错: 先判断输赢,再判断平局 待改进: check() 函数写的 ...
- 第六课cnn和迁移学习-七月在线-cv
ppt 参数共享终于把拿一点想清楚啦,一定要知道w是矩阵! 在传统BP中,w前后连接时是all的,辣么多w使得你给我多少图片我就能记住多少信息-->导致过拟合-->cnn当中权值共享 激励 ...
- 数据结构作业——图的存储及遍历(邻接矩阵、邻接表+DFS递归、非递归+BFS)
邻接矩阵存图 /* * @Author: WZY * @School: HPU * @Date: 2018-11-02 18:35:27 * @Last Modified by: WZY * @Las ...
- Spark各个版本新特性
后续会添加spark生态系统中各个组件的兼容支持情况... Spark2.0.0 * 2016-07-27正式发布 * 它是2.x版本线的上的第一个版本. * 300位contributors的超过2 ...
- 【转】基于Map的简易记忆化缓存
看到文章后,自己也想写一些关于这个方面的,但是觉得写的估计没有那位博主好,而且又会用到里面的许多东西,所以干脆转载.但是会在文章末尾写上自己的学习的的东西. 原文出处如下: http://www.cn ...
- Go Example--锁
package main import ( "fmt" "math/rand" "runtime" "sync" &qu ...