tf.nn.max_pool(value, ksize, strides, padding, name=None)

参数是四个,和卷积很类似:

第一个参数value:需要池化的输入,一般池化层接在卷积层后面,所以输入通常是feature map,依然是[batch, height, width, channels]这样的shape

第二个参数ksize:池化窗口的大小,取一个四维向量,一般是[1, height, width, 1],因为我们不想在batch和channels上做池化,所以这两个维度设为了1

第三个参数strides:和卷积类似,窗口在每一个维度上滑动的步长,一般也是[1, stride,stride, 1]

第四个参数padding:和卷积类似,可以取'VALID' 或者'SAME'

返回一个Tensor,类型不变,shape仍然是[batch, height, width, channels]这种形式

示例源码:

假设有这样一张图,双通道

第一个通道:

第二个通道:

用程序去做最大值池化:

import tensorflow as tf

a=tf.constant([
[[1.0,2.0,3.0,4.0],
[5.0,6.0,7.0,8.0],
[8.0,7.0,6.0,5.0],
[4.0,3.0,2.0,1.0]],
[[4.0,3.0,2.0,1.0],
[8.0,7.0,6.0,5.0],
[1.0,2.0,3.0,4.0],
[5.0,6.0,7.0,8.0]]
]) a=tf.reshape(a,[1,4,4,2]) pooling=tf.nn.max_pool(a,[1,2,2,1],[1,1,1,1],padding='VALID')
with tf.Session() as sess:
print("image:")
image=sess.run(a)
print (image)
print("reslut:")
result=sess.run(pooling)
print (result)

这里步长为1,窗口大小2×2,输出结果:

image:
[[[[ 1. 2.]
[ 3. 4.]
[ 5. 6.]
[ 7. 8.]] [[ 8. 7.]
[ 6. 5.]
[ 4. 3.]
[ 2. 1.]] [[ 4. 3.]
[ 2. 1.]
[ 8. 7.]
[ 6. 5.]] [[ 1. 2.]
[ 3. 4.]
[ 5. 6.]
[ 7. 8.]]]]
reslut:
[[[[ 8. 7.]
[ 6. 6.]
[ 7. 8.]] [[ 8. 7.]
[ 8. 7.]
[ 8. 7.]] [[ 4. 4.]
[ 8. 7.]
[ 8. 8.]]]]

池化后的图就是:

证明了程序的结果是正确的。

我们还可以改变步长

pooling=tf.nn.max_pool(a,[1,2,2,1],[1,2,2,1],padding='VALID')

最后的result就变成:

reslut:
[[[[ 8. 7.]
[ 7. 8.]] [[ 4. 4.]
[ 8. 8.]]]]

TensorFlow:tf.nn.max_pool实现池化操作的更多相关文章

  1. 深度学习原理与框架-Tensorflow卷积神经网络-卷积神经网络mnist分类 1.tf.nn.conv2d(卷积操作) 2.tf.nn.max_pool(最大池化操作) 3.tf.nn.dropout(执行dropout操作) 4.tf.nn.softmax_cross_entropy_with_logits(交叉熵损失) 5.tf.truncated_normal(两个标准差内的正态分布)

    1. tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME')  # 对数据进行卷积操作 参数说明:x表示输入数据,w表示卷积核, stride ...

  2. 【TensorFlow】tf.nn.max_pool实现池化操作

    max pooling是CNN当中的最大值池化操作,其实用法和卷积很类似 有些地方可以从卷积去参考[TensorFlow]tf.nn.conv2d是怎样实现卷积的? tf.nn.max_pool(va ...

  3. 深度学习原理与框架-Tensorflow卷积神经网络-cifar10图片分类(代码) 1.tf.nn.lrn(局部响应归一化操作) 2.random.sample(在列表中随机选值) 3.tf.one_hot(对标签进行one_hot编码)

    1.tf.nn.lrn(pool_h1, 4, bias=1.0, alpha=0.001/9.0, beta=0.75) # 局部响应归一化,使用相同位置的前后的filter进行响应归一化操作 参数 ...

  4. tf入门-池化函数 tf.nn.max_pool 的介绍

    转载自此大神 http://blog.csdn.net/mao_xiao_feng/article/details/53453926 max pooling是CNN当中的最大值池化操作,其实用法和卷积 ...

  5. CNN之池化层tf.nn.max_pool | tf.nn.avg_pool | tf.reduce_mean | padding的规则解释

    摘要:池化层的主要目的是降维,通过滤波器映射区域内取最大值.平均值等操作. 均值池化:tf.nn.avg_pool(input,ksize,strides,padding) 最大池化:tf.nn.ma ...

  6. tf.nn.max_pool 池化

    tf.nn.max_pool( value, ksize, strides, padding, data_format='NHWC', name=None ) 参数: value:由data_form ...

  7. tensorflow max_pool(最大池化)应用

    1.最大池化 max pooling是CNN当中的最大值池化操作,其实用法和卷积很类似. tf.nn.max_pool(value, ksize, strides, padding, name=Non ...

  8. 第十四节,TensorFlow中的反卷积,反池化操作以及gradients的使用

    反卷积是指,通过测量输出和已知输入重构未知输入的过程.在神经网络中,反卷积过程并不具备学习的能力,仅仅是用于可视化一个已经训练好的卷积神经网络,没有学习训练的过程.反卷积有着许多特别的应用,一般可以用 ...

  9. TF-池化函数 tf.nn.max_pool 的介绍

    转载自此大神 http://blog.csdn.net/mao_xiao_feng/article/details/53453926 max pooling是CNN当中的最大值池化操作,其实用法和卷积 ...

随机推荐

  1. H5之localStorage,sessionStorage

    在以前的时候也听说过一些h5缓存技术,具体也没有去使用过,就在前两三个礼拜我用了localStorage和sessionStorage这两个存储方式, 我使用这些存储技术,也是想减少访问服务器的请求, ...

  2. 移动APP漏洞趋势

    个人总结,可能片面或不正确 样本来自WooYun网站,截止15年12月19号,一共75650个漏洞: 一.Top10安全漏洞中,sql注入占1/3:可见如果你是sql注入方面的测试专家,web安全1/ ...

  3. Linux audit安全审计工具

    /********************************************************************** * Linux audit安全审计工具 * 说明: * ...

  4. Unity 3D动态修改Shader状态,使物体透明等等

    Unity动态改Shader状态透明 本文提供全流程,中文翻译. Chinar 坚持将简单的生活方式,带给世人!(拥有更好的阅读体验 -- 高分辨率用户请根据需求调整网页缩放比例) Chinar -- ...

  5. CodeForces - 1097F:Alex and a TV Show (bitset & 莫比乌斯容斥)

    Alex decided to try his luck in TV shows. He once went to the quiz named "What's That Word?!&qu ...

  6. js获取当前时间戳的三个方法

    var time1 = Date.parse(new Date()); var time2 = new Date().valueOf(); var time3 = new Date().getTime ...

  7. 20155208徐子涵 2016-2017-2 《Java程序设计》第9周学习总结

    20155208徐子涵 2016-2017-2 <Java程序设计>第9周学习总结 教材学习内容总结 第十六章 整合数据库 16.1 JDBC入门 撰写应用程序是利用通信协议对数据库进行指 ...

  8. UE4 IOS 开发之传感器输入

    Iphone的传感器包括陀螺仪.加速计等. UE4提供了4个按键来收集这些传感器的3维数据.具体位置:ProjectSettings->Input. 其中Tilt数据可以反映Iphone目前的物 ...

  9. hdu3338 Kakuro Extension 最大流

    If you solved problem like this, forget it.Because you need to use a completely different algorithm ...

  10. exception in thread "http-apr-80-exec-24" java.lang.OutOfMemoryError:PermGen...

    今天客户说项目访问不了了,我急忙看了下告警,发现上报:“exception in thread "http-apr-80-exec-24" java.lang.OutOfMemor ...