The dplyr package has been updated with new data manipulation commands for filters, joins and set operations.(转)
dplyr 0.4.0
January 9, 2015 in Uncategorized
I’m very pleased to announce that dplyr 0.4.0 is now available from CRAN. Get the latest version by running:
install.packages("dplyr")
dplyr 0.4.0 includes over 80 minor improvements and bug fixes, which are described in detail in the release notes. Here I wanted to draw your attention to two areas that have particularly improved since dplyr 0.3, two-table verbs and data frame support.
Two table verbs
dplyr now has full support for all two-table verbs provided by SQL:
- Mutating joins, which add new variables to one table from matching rows in another:
inner_join(),left_join(),right_join(),full_join(). (Support for non-equi joins is planned for dplyr 0.5.0.) - Filtering joins, which filter observations from one table based on whether or not they match an observation in the other table:
semi_join(),anti_join(). - Set operations, which combine the observations in two data sets as if they were set elements:
intersect(),union(),setdiff().
Together, these verbs should allow you to solve 95% of data manipulation problems that involve multiple tables. If any of the concepts are unfamiliar to you, I highly recommend reading the two-table vignette (and if you still don’t understand, please let me know so I can make it better.)
Data frames
dplyr wraps data frames in a tbl_df class. These objects are structured in exactly the same way as regular data frames, but their behaviour has been tweaked a little to make them easier to work with. The new data_frames vignette describes how dplyr works with data frames in general, and below I highlight some of the features new in 0.4.0.
PRINTING
The biggest difference is printing: print.tbl_df() doesn’t try and print 10,000 rows! Printing got a lot of love in dplyr 0.4 and now:
- All
print()method methods invisibly return their input so you can interleaveprint()statements into a pipeline to see interim results. - If you’ve managed to produce a 0-row data frame, dplyr won’t try to print the data, but will tell you the column names and types:
data_frame(x = numeric(), y = character())
#> Source: local data frame [0 x 2]
#>
#> Variables not shown: x (dbl), y (chr) - dplyr never prints row names since no dplyr method is guaranteed to preserve them:
df <- data.frame(x = c(a = 1, b = 2, c = 3))
df
#> x
#> a 1
#> b 2
#> c 3
df %>% tbl_df()
#> Source: local data frame [3 x 1]
#>
#> x
#> 1 1
#> 2 2
#> 3 3I don’t think using row names is a good idea because it violates one of the principles of tidy data: every variable should be stored in the same way.
To make life a bit easier if you do have row names, you can use the new
add_rownames()to turn your row names into a proper variable:df %>%
add_rownames()
#> rowname x
#> 1 a 1
#> 2 b 2
#> 3 c 3(But you’re better off never creating them in the first place.)
options(dplyr.print_max)is now 20, so dplyr will never print more than 20 rows of data (previously it was 100). The best way to see more rows of data is to useView().
COERCING LISTS TO DATA FRAMES
When you have a list of vectors of equal length that you want to turn into a data frame, dplyr provides as_data_frame() as a simple alternative to as.data.frame().as_data_frame() is considerably faster than as.data.frame() because it does much less:
l <- replicate(26, sample(100), simplify = FALSE)
names(l) <- letters
microbenchmark::microbenchmark(
as_data_frame(l),
as.data.frame(l)
)
#> Unit: microseconds
#> expr min lq median uq max neval
#> as_data_frame(l) 101.856 112.0615 124.855 143.0965 254.193 100
#> as.data.frame(l) 1402.075 1466.6365 1511.644 1635.1205 3007.299 100
It’s difficult to precisely describe what as.data.frame(x) does, but it’s similar todo.call(cbind, lapply(x, data.frame)) – it coerces each component to a data frame and then cbind()s them all together.
The speed of as.data.frame() is not usually a bottleneck in interactive use, but can be a problem when combining thousands of lists into one tidy data frame (this is common when working with data stored in json or xml).
BINDING ROWS AND COLUMNS
dplyr now provides bind_rows() and bind_cols() for binding data frames together. Compared to rbind() and cbind(), the functions:
- Accept either individual data frames, or a list of data frames:
a <- data_frame(x = 1:5)
b <- data_frame(x = 6:10) bind_rows(a, b)
#> Source: local data frame [10 x 1]
#>
#> x
#> 1 1
#> 2 2
#> 3 3
#> 4 4
#> 5 5
#> .. .
bind_rows(list(a, b))
#> Source: local data frame [10 x 1]
#>
#> x
#> 1 1
#> 2 2
#> 3 3
#> 4 4
#> 5 5
#> .. .If
xis a list of data frames,bind_rows(x)is equivalent todo.call(rbind, x). - Are much faster:
dfs <- replicate(100, data_frame(x = runif(100)), simplify = FALSE)
microbenchmark::microbenchmark(
do.call("rbind", dfs),
bind_rows(dfs)
)
#> Unit: microseconds
#> expr min lq median uq max
#> do.call("rbind", dfs) 5344.660 6605.3805 6964.236 7693.8465 43457.061
#> bind_rows(dfs) 240.342 262.0845 317.582 346.6465 2345.832
#> neval
#> 100
#> 100
(Generally you should avoid bind_cols() in favour of a join; otherwise check carefully that the rows are in a compatible order).
LIST-VARIABLES
Data frames are usually made up of a list of atomic vectors that all have the same length. However, it’s also possible to have a variable that’s a list, which I call a list-variable. Because of data.frame()s complex coercion rules, the easiest way to create a data frame containing a list-column is with data_frame():
data_frame(x = 1, y = list(1), z = list(list(1:5, "a", "b")))
#> Source: local data frame [1 x 3]
#>
#> x y z
#> 1 1 <dbl[1]> <list[3]>
Note how list-variables are printed: a list-variable could contain a lot of data, so dplyr only shows a brief summary of the contents. List-variables are useful for:
- Working with summary functions that return more than one value:
qs <- mtcars %>%
group_by(cyl) %>%
summarise(y = list(quantile(mpg))) # Unnest input to collpase into rows
qs %>% tidyr::unnest(y)
#> Source: local data frame [15 x 2]
#>
#> cyl y
#> 1 4 21.4
#> 2 4 22.8
#> 3 4 26.0
#> 4 4 30.4
#> 5 4 33.9
#> .. ... ... # To extract individual elements into columns, wrap the result in rowwise()
# then use summarise()
qs %>%
rowwise() %>%
summarise(q25 = y[2], q75 = y[4])
#> Source: local data frame [3 x 2]
#>
#> q25 q75
#> 1 22.80 30.40
#> 2 18.65 21.00
#> 3 14.40 16.25 - Keeping associated data frames and models together:
by_cyl <- split(mtcars, mtcars$cyl)
models <- lapply(by_cyl, lm, formula = mpg ~ wt) data_frame(cyl = c(4, 6, 8), data = by_cyl, model = models)
#> Source: local data frame [3 x 3]
#>
#> cyl data model
#> 1 4 <S3:data.frame> <S3:lm>
#> 2 6 <S3:data.frame> <S3:lm>
#> 3 8 <S3:data.frame> <S3:lm>
dplyr’s support for list-variables continues to mature. In 0.4.0, you can join and row bind list-variables and you can create them in summarise and mutate.
My vision of list-variables is still partial and incomplete, but I’m convinced that they will make pipeable APIs for modelling much eaiser. See the draft lowliner package for more explorations in this direction.
Bonus
My colleague, Garrett, helped me make a cheat sheet that summarizes the data wrangling features of dplyr 0.4.0. You can download it from RStudio’s new gallery of R cheat sheets.

The dplyr package has been updated with new data manipulation commands for filters, joins and set operations.(转)的更多相关文章
- Data Manipulation with dplyr in R
目录 select The filter and arrange verbs arrange filter Filtering and arranging Mutate The count verb ...
- Accessing data in Hadoop using dplyr and SQL
If your primary objective is to query your data in Hadoop to browse, manipulate, and extract it into ...
- HBase:Shell
HBase shell commands As told in HBase introduction, HBase provides Extensible jruby-based (JIRB) she ...
- OCP—051试题
FROM: http://blog.itpub.net/26736162/viewspace-1252569/?page=2 http://blog.csdn.net/elearnings/artic ...
- OCP考试062题库出现大量新题-19
choose three Which three statements are true about Oracle Data Pump? A) Oracle Data Pump export and ...
- 数据处理包plyr和dplyr包的整理
以下内容主要参照 Introducing dplyr 和 dplyr 包自带的简介 (Introduction to dplyr), 复制了原文对应代码, 并夹杂了个人理解和观点 (多附于括号内). ...
- R语言扩展包dplyr笔记
引言 2014年刚到, 就在 Feedly 订阅里看到 RStudio Blog 介绍 dplyr 包已发布 (Introducing dplyr), 此包将原本 plyr 包中的 ddply() 等 ...
- R Tidyverse dplyr包学习笔记2
Tidyverse 学习笔记 1.gapminder 我理解的gapminder应该是一个内置的数据集 加载之后使用 > # Load the gapminder package > li ...
- SSISDB7:查看当前正在运行的Package
在项目组中做ETL开发时,经常会被问到:“现在ETL跑到哪一个Package了?” 为了缩短ETL运行的时间,在ETL的设计上,经常会使用并发执行模式:Task 并发执行,Package并发执行.对于 ...
随机推荐
- 用swap函数交换两个整数
#include<stdio.h> //头文件 main() //主函数 { void swap(int *p,int *q); //声明 int a,b; //定义两个整数 int *p ...
- JS滚动加载
var one = true;//设置一个全局变量 $(window).scroll(function () { var hight = document.body.scrollHeight - do ...
- Selenium Grid2
简介 使用selenium-grid可以远程执行测试的代码,核心步骤:grid --> server-->chromedriver驱动 -->chrome浏览器 利用Selenium ...
- Jmeter自动化测试工具的简单使用--HTTP测试
Jmeter自动化测试工具的简单应用 1.安装Jmeter 链接: https://pan.baidu.com/s/1mhSzU68 密码: 446z 到这里下载 1.1 jmeter 将下载好的 ...
- angular 自定义filter
用modul.filter .filter("fiilterCity",function(){ return function(obj){ var newObj = []; ang ...
- JavaScript中的数据结构及实战系列(2):栈
开题: 不冒任何险,什么都不做,什么也不会有,什么也不是. 本文目录 栈介绍: JavaScript实现栈: 栈的应用: 栈介绍: 和队列一样,栈也是一种表结构,但是和队列的"先进先出&qu ...
- jsp实现仿QQ空间新建多个相册名称,向相册中添加照片
工具:Eclipse,Oracle,smartupload.jar:语言:jsp,Java:数据存储:Oracle. 实现功能介绍: 主要是新建相册,可以建多个相册,在相册中添加多张照片,删除照片,删 ...
- python——文件操作
open函数,该函数用于文件处理 操作文件时,一般需要经历如下步骤: 打开文件 操作文件 一.打开文件 1 文件句柄 = open('文件路径', '模式') 打开文件时,需要指定文件路径和以何等方式 ...
- 日期时间插件flatpickr.js使用方法
今天写代码时需要用一款插件来实现对input输入时间的格式控制,找到了两款功能合适而且比较美观的插件:基于Bootstrap的DateTimePicker.js和flatpickr.js插件.一开始先 ...
- 开发一款直播APP系统软件应该有哪些功能,如何开发?
1.技术实现层面: 技术相对都比较成熟,设备也都支持硬编码.IOS还提供现成的 Video ToolBox框架,可以对摄像头和流媒体数据结构进行处理,但Video ToolBox框架只兼容8.0以上版 ...