Brainman

Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 10575   Accepted: 5489

Description

Background
Raymond Babbitt drives his brother Charlie mad. Recently Raymond counted 246 toothpicks spilled all over the floor in an instant just by glancing at them. And he can even count Poker cards. Charlie would love to be able to do cool things like that, too. He wants to beat his brother in a similar task.

Problem
Here's what Charlie thinks of. Imagine you get a sequence of N numbers. The goal is to move the numbers around so that at the end the sequence is ordered. The only operation allowed is to swap two adjacent numbers. Let us try an example:Start with: 2 8 0 3
swap  (2 8) 8 2 0 3
swap  (2 0) 8 0 2 3
swap  (2 3) 8 0 3 2
swap  (8 0) 0 8 3 2
swap  (8 3) 0 3 8 2
swap  (8 2) 0 3 2 8
swap  (3 2) 0 2 3 8
swap  (3 8) 0 2 8 3
swap  (8 3) 0 2 3 8So the sequence (2 8 0 3) can be sorted with nine swaps of adjacent numbers. However, it is even possible to sort it with three such swaps:Start with: 2 8 0 3
swap  (8 0) 2 0 8 3
swap  (2 0) 0 2 8 3
swap  (8 3) 0 2 3 8The question is: What is the minimum number of swaps of adjacent numbers to sort a given sequence?Since Charlie does not have Raymond's mental capabilities, he decides to cheat. Here is where you come into play. He asks you to write a computer program for him that answers the question. Rest assured he will pay a very good prize for it.

Input

The first line contains the number of scenarios.
For every scenario, you are given a line containing first the length N (1 <= N <= 1000) of the sequence,followed by the N elements of the sequence (each element is an integer in [-1000000, 1000000]). All numbers in this line are separated by single blanks.

Output

Start the output for every scenario with a line containing "Scenario #i:", where i is the number of the scenario starting at 1. Then print a single line containing the minimal number of swaps of adjacent numbers that are necessary to sort the given sequence. Terminate the output for the scenario with a blank line.

Sample Input

4
4 2 8 0 3
10 0 1 2 3 4 5 6 7 8 9
6 -42 23 6 28 -100 65537
5 0 0 0 0 0

Sample Output

Scenario #1:
3 Scenario #2:
0 Scenario #3:
5 Scenario #4:
0

Source

TUD Programming Contest 2003, Darmstadt, Germany
题目链接:http://poj.org/problem?id=1804
分析:求逆序数的大水题,虽然这题数据给的范围很小,暴力都可以过,写不来的时候直接暴力就可以过,如果数据改大了就必然TL,想想看还有啥方法!
<1>.暴力大法,时间复杂度为O(n^2)
<2>.归并排序法,时间复杂度为O(n*log n)
<3>.线段树单点更新,时间复杂度为O(log n)
第一种暴力大法,请看AC代码:
 #include <iostream>
#include <stdio.h>
using namespace std;
const int N=;
int a[N],b[N];
int main()
{
int n;
scanf("%d",&n);
for(int k=;k<=n;k++)
{
int m;
scanf("%d",&m);
for(int i=;i<=m;i++)
scanf("%d",&a[i]);
int ans=;
for(int i=;i<=m;i++)
for(int j=i+;j<=m;j++)
if(a[i]>a[j])
ans++;
printf("Scenario #%d:\n%d\n\n",k,ans);
}
return ;
}

第二种归并排序, 对2个已经排好序的数列,进行再排序,只需要把2个数列,从头到尾,按顺序,谁小,谁就先进入tmp数组, 最后tmp数组一定排好序了,然后把TMP数组的元素复制回原数组中即可。

同理,如果我们知道2个子序列的逆序对数量,是否可以通过归并排序一样,求出整体的数量呢?显然是可以的。

这里有一个地方,当左边的数列的a[k]要进tmp数组了, 这个时候,如果右边的指针指向a+mid+p,就说明a[k]比a[mid+1]...a[mid + 2]..a[mid+3].....a[mid+p]都要大!【重要】

也就是说,对于a[k]而言,整个数列中, mid+ mid+2...mid+p都在k后面,同时a[k]比a[mid+1],a[mid+2]...a[mid+p]都要大。 那么显然是增加逆序对数量的。 通过整个方法,计算出整个逆序对的数量即可。

下面给出AC代码:

 #include <iostream>
#include <cstdio>
#include <cstdlib>
using namespace std;
const int max_n = + ; int n, a[max_n];
int tmp[max_n], ans; void merge(int *a, int *tmp, int l, int mid, int r)
{
if (l >= r) return;
int i = l, j = mid + , k = ;
int count = , flag = ;
while (i <= mid && j <= r)
{
if (a[i] <= a[j])
{
tmp[k ++] = a[i++];
ans += j - mid - ;
}else tmp[k ++ ] = a[j++];
}
while (i <= mid) tmp[k ++] = a[i++], ans += r- mid;
while (j <= r) tmp[k ++] = a[j++];
for (i = ; i != k; ++ i) a[l + i] = tmp[i];
} void mergesort(int *a, int *tmp, int l, int r)
{
if (l >= r) return;
int mid = (l + r) / ;
mergesort(a, tmp, l, mid);
mergesort(a, tmp , mid + , r);
merge(a, tmp, l, mid, r);
} int main()
{
int tt;
scanf("%d", &tt);
for (int i = ; i <= tt; ++ i)
{
cout<<"Scenario #"<<i<<":"<<endl;
scanf("%d", &n);
ans = ;
for (int i = ; i != n; ++ i) scanf("%d", &a[i]);
mergesort(a, tmp, , n - );
cout<<ans<<endl<<endl;
}
}

第三种线段树单点更新

n个数扫一边 遇到一个值i加到线段树上  查(i+1,n),再求和输出!
下面给出AC代码:
 #include <map>
#include <iostream>
#include <set>
#include <cstdio>
#include <cstdlib>
using namespace std; const int max_n = + ; int n;
int a[max_n], count;
map<int, int>G;
map<int, int>::iterator it; struct node
{
int cd, key;
int ls, rs;
int L, R;
node():L(),R(),ls(),rs(),cd(),key(){};
void clear()
{
cd = key = ;
}
}t[max_n * ];
int tail = ; void init()
{
for (int i = ; i != max_n * ; ++ i) t[i].clear();
G.clear();
scanf("%d", &n);
for (int i = ; i != n; ++ i)
{
scanf("%d", &a[i]);
G[a[i]] = ;
}
count = ;
for (it = G.begin(); it != G.end(); ++ it) it -> second = ++ count;
} void make_tree(int now, int LL, int RR)
{
t[now].L = LL;
t[now].R = RR;
if (LL == RR) return;
int mid = (LL + RR)/ ;
make_tree(t[now].ls = ++ tail, LL, mid);
make_tree(t[now].rs = ++ tail, mid + , RR);
} void tran(int now)
{
int left_son = t[now].ls, right_son = t[now].rs;
t[left_son].cd += t[now].cd;
t[right_son].cd += t[now].cd;
t[now].key += t[now].cd;
t[now].cd = ;
} void ins(int now, int LL, int RR)
{ tran(now);
if (t[now].L == LL && t[now].R == RR)
{
t[now].cd ++;
return;
}
t[now].key ++;
int mid = (t[now].L + t[now].R) / ;
if (RR <= mid) {ins(t[now].ls, LL, RR); return;}
if (mid < LL) {ins(t[now].rs, LL, RR); return;}
ins(t[now].ls, LL, mid);
ins(t[now].rs, mid + , RR);
} int find(int now, int LL, int RR)//因为题目的特殊性,只会找一个……
{
tran(now);
if (t[now].L == LL && t[now].R == RR) return t[now].key;
int mid = (t[now].L + t[now].R) / ;
if (RR <= mid) return find(t[now].ls, LL, RR);
if (mid < LL) return find(t[now].rs, LL, RR);
cout<<"wtf?"<<endl;
} void doit()
{
int ans=;
for (int i = ; i != n; ++ i)
{
int num = G[a[i]];
ans += find(, num + , num + );
ins(, , num);
}
cout<<ans<<endl;
} int main()
{
int tt;
scanf("%d",&tt);
make_tree(, , );
for (int i = ; i <= tt; ++ i)
{
cout<<"Scenario #"<<i<<":"<<endl;
init();
doit();
cout<<endl;
}
}

另外还有几种好办法,贴一下
第四种:树状数组

树状数组, 其实和线段树道理一样。 但是对于树状数组,我会单独开一张好好研究哒。 这里就贴一下速度,并没有比线段树快很多……也许我的写法不好?【如果对树状数组有疑惑,可以看我下一篇文章,我会带领你们好好学会树状数组这个神奇的东西~】

 #include <cstdio>
#include <cstdlib>
#include <map>
#include <cstring>
using namespace std;
#define lowbit(k) ((k)&(-k)) const int max_n = + ;
int n, a[max_n], s[max_n];
map<int, int>G;
map<int, int>::iterator it;
int count;
void init()
{
scanf("%d", &n);
G.clear();
count = ;
memset(s, , sizeof(s));
for (int i = ; i != n; ++ i)
{
scanf("%d", &a[i]);
G[a[i]] = ;
}
for (it = G.begin(); it != G.end(); ++ it) it -> second = ++ count;
} void ins(int k)
{
s[k] += ;
while ((k += lowbit(k)) <= ) s[k] += ;
} int ask(int k)//1..k的和
{
int tot = s[k];
while (k -= lowbit(k)) tot += s[k];
return tot;
} void doit()
{
int ans = ;
for (int i = ; i != n; ++ i)
{
int num = G[a[i]];
ans += ask(count) - ask(num);
ins(num);
}
printf("%d\n",ans);
} int main()
{
int tt;
scanf("%d", &tt);
for (int i = ; i <= tt; ++ i)
{
printf("Scenario #%d:\n",i);
init();
doit();
printf("\n");
}
}

第五种:平衡树

只要查找,当前在树中,有多少个数字比a[k]要大, 因为是按顺序插入的,所以这个数字的数量就是逆序对的个数

这里有一个小技巧,如果平衡树每次要删的话很麻烦,直接用写成struct,然后新的树就new,最后delete掉即可~

 #include <iostream>
#include <cstdio>
#include <cstdlib>
using namespace std;
const int max_n = + ; int n;
const int maxint = 0x7fffffff; struct node
{
node *c[];
int key;
int size;
node():key(),size()
{
c[] = c[] = this;
}
node(int KEY_, node *a0, node *a1):
key(KEY_){c[] =a0, c[]=a1;}
node* rz(){return size = c[]->size + c[]->size + , this;}
}Tnull, *null=&Tnull; struct splay
{
node *root;
splay()
{
root = (new node(*null)) -> rz();
root -> key = maxint;
}
void zig(int d)
{
node *t = root -> c[d];
root -> c[d] = null -> c[d];
null -> c[d] = root;
root = t;
}
void zigzig(int d)
{
node *t = root -> c[d] -> c[d];
root -> c[d] -> c[d] = null -> c[d];
null -> c[d] = root -> c[d];
root -> c[d] = null -> c[d] -> c[!d];
null -> c[d] -> c[!d] = root -> rz();
root = t;
} void finish(int d)
{
node *t = null -> c[d], *p = root -> c[!d];
while (t != null)
{
t = null -> c[d] -> c[d];
null -> c[d] -> c[d] = p;
p = null -> c[d] -> rz();
null -> c[d] = t;
}
root -> c[!d] = p;
}
void select(int k)//谁有k个儿子
{
int t;
while ()
{
bool d = k > (t = root -> c[] -> size);
if (k == t || root -> c[d] == null) break;
if (d) k -= t + ;
bool dd = k > (t = root -> c[d] -> c[] -> size);
if (k == t || root -> c[d] -> c[dd] == null){zig(d); break;}
if (dd) k -= t + ;
d != dd ? zig(d), zig(dd) : zigzig(d);
}
finish(), finish();
root -> rz();
}
void search(int x)
{
while ()
{
bool d = x > root -> key;
if (root -> c[d] == null) break;
bool dd = x > root -> c[d] -> key;
if (root -> c[d] -> c[dd] == null){zig(d); break;}
d != dd ? zig(d), zig(dd) : zigzig(dd);
}
finish(), finish();
root -> rz();
if (x > root -> key) select(root -> c[] -> size + );
} void ins(int x)
{
search(x);
node *oldroot = root;
root = new node(x, oldroot -> c[],oldroot);
oldroot -> c[] = null;
oldroot -> rz();
root -> rz();
}
int sel(int k){return select(k - ), root -> key;}
int ran(int x){return search(x), root -> c[] -> size + ;}
}*sp; int main()
{
int tt;
scanf("%d", &tt);
for (int i = ; i <= tt; ++ i)
{
sp = new splay;
cout<<"Scenario #"<<i<<":"<<endl;
scanf("%d", &n);
int ans = ;
int tmp;
for (int i = ; i != n; ++ i)
{
scanf("%d", &tmp);
tmp = - tmp;
ans += sp -> ran(tmp) - ;
//cout<<sp.ran(tmp) - 1<<endl;
sp -> ins(tmp);
}
delete sp;
cout<<ans<<endl<<endl;
}
}

POJ 1804 Brainman(5种解法,好题,【暴力】,【归并排序】,【线段树单点更新】,【树状数组】,【平衡树】)的更多相关文章

  1. poj 2892---Tunnel Warfare(线段树单点更新、区间合并)

    题目链接 Description During the War of Resistance Against Japan, tunnel warfare was carried out extensiv ...

  2. HDU 1166 敌兵布阵(线段树单点更新,板子题)

    敌兵布阵 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submi ...

  3. POJ.3321 Apple Tree ( DFS序 线段树 单点更新 区间求和)

    POJ.3321 Apple Tree ( DFS序 线段树 单点更新 区间求和) 题意分析 卡卡屋前有一株苹果树,每年秋天,树上长了许多苹果.卡卡很喜欢苹果.树上有N个节点,卡卡给他们编号1到N,根 ...

  4. POJ.2299 Ultra-QuickSort (线段树 单点更新 区间求和 逆序对 离散化)

    POJ.2299 Ultra-QuickSort (线段树 单点更新 区间求和 逆序对 离散化) 题意分析 前置技能 线段树求逆序对 离散化 线段树求逆序对已经说过了,具体方法请看这里 离散化 有些数 ...

  5. CDOJ 1073 线段树 单点更新+区间查询 水题

    H - 秋实大哥与线段树 Time Limit:1000MS     Memory Limit:65535KB     64bit IO Format:%lld & %llu Submit S ...

  6. POJ 1804 Brainman

    Brainman Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 7787   Accepted: 4247 Descript ...

  7. POJ 1804 Brainman(归并排序)

    传送门 Description Background Raymond Babbitt drives his brother Charlie mad. Recently Raymond counted ...

  8. POJ 2892 Tunnel Warfare(线段树单点更新区间合并)

    Tunnel Warfare Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 7876   Accepted: 3259 D ...

  9. poj 2828(线段树单点更新)

    Buy Tickets Time Limit: 4000MS   Memory Limit: 65536K Total Submissions: 18561   Accepted: 9209 Desc ...

随机推荐

  1. 【java】ArrayList、Iterator用法

    package com.tn.collect; import java.util.ArrayList; import java.util.Iterator; class Product{ public ...

  2. Safari不能连接到服务器

    系统偏好设置-网络-高级-代理,把"网页代理"和"安全网页代理"两个复选项去掉,最下面"使用被动FTP模式"复选项保留,即可解决!

  3. Python Web框架

    本节对Python Web框架学习 一.MTVModel: 存放所有数据库相关文件Template:模板文件,存放html文件View: 业务处理,即函数文件 二.MVCmodel: 存放数据库相关文 ...

  4. [Maven] Missing artifact

    今天从朋友那拷过来一个maven工程,eclipse中maven配置好了,maven仓库也配置完毕,但是一直报Missing artifact,然后开网执行maven update,下载完jar后,还 ...

  5. 使用Python Shapefile Library创建和编辑Shapefile文件

    介绍 shapefile是GIS中非常重要的一种数据类型,在ArcGIS中被称为要素类(Feature Classes),主要包括点(point).线(polyline)和多边形(polygon).P ...

  6. BZOJ 4816 数字表格

    首先是惯例的吐槽.SDOI题目名称是一个循环,题目内容也是一个循环,基本上过几年就把之前的题目换成另一个名字出出来,喜大普奔亦可赛艇.学长说考SDOI可以考出联赛分数,%%%. 下面放解题报告.并不喜 ...

  7. 【Tomcat】重新打war包

    Extract war in tomcat/webapps #!/bin/bash #----------------------------------------------- # FileNam ...

  8. 关于python中的dir函数

    dir函数用于查看python对象的属性,如果所查看的python对象已经定义了__dir__方法,则使用dir会返回定义的__dir__方法的返回值.如果没有定义__dir__方法,则会从__dic ...

  9. idea为tomcat设置虚拟地址

    1.设置tomcat的server.xml <Host name="localhost" appBase="webapps" unpackWARs=&qu ...

  10. Mysql中字符集总结

    有时候,在Mysql数据库中会经常遇到乱码的问题,现在普遍的做法就是全部强行把编码格式都设置成utf8模式,就可以解决这个问题,以前是知其然,不知其所以然,今天我就稍微研究了下Mysql的字符集. 就 ...