POJ 1804 Brainman(5种解法,好题,【暴力】,【归并排序】,【线段树单点更新】,【树状数组】,【平衡树】)
Brainman
Time Limit: 1000MS | Memory Limit: 30000K | |
Total Submissions: 10575 | Accepted: 5489 |
Description
Raymond Babbitt drives his brother Charlie mad. Recently Raymond counted 246 toothpicks spilled all over the floor in an instant just by glancing at them. And he can even count Poker cards. Charlie would love to be able to do cool things like that, too. He wants to beat his brother in a similar task.
Problem
Here's what Charlie thinks of. Imagine you get a sequence of N numbers. The goal is to move the numbers around so that at the end the sequence is ordered. The only operation allowed is to swap two adjacent numbers. Let us try an example:Start with: 2 8 0 3
swap (2 8) 8 2 0 3
swap (2 0) 8 0 2 3
swap (2 3) 8 0 3 2
swap (8 0) 0 8 3 2
swap (8 3) 0 3 8 2
swap (8 2) 0 3 2 8
swap (3 2) 0 2 3 8
swap (3 8) 0 2 8 3
swap (8 3) 0 2 3 8So the sequence (2 8 0 3) can be sorted with nine swaps of adjacent numbers. However, it is even possible to sort it with three such swaps:Start with: 2 8 0 3
swap (8 0) 2 0 8 3
swap (2 0) 0 2 8 3
swap (8 3) 0 2 3 8The question is: What is the minimum number of swaps of adjacent numbers to sort a given sequence?Since Charlie does not have Raymond's mental capabilities, he decides to cheat. Here is where you come into play. He asks you to write a computer program for him that answers the question. Rest assured he will pay a very good prize for it.
Input
For every scenario, you are given a line containing first the length N (1 <= N <= 1000) of the sequence,followed by the N elements of the sequence (each element is an integer in [-1000000, 1000000]). All numbers in this line are separated by single blanks.
Output
Sample Input
4
4 2 8 0 3
10 0 1 2 3 4 5 6 7 8 9
6 -42 23 6 28 -100 65537
5 0 0 0 0 0
Sample Output
Scenario #1:
3 Scenario #2:
0 Scenario #3:
5 Scenario #4:
0
Source
#include <iostream>
#include <stdio.h>
using namespace std;
const int N=;
int a[N],b[N];
int main()
{
int n;
scanf("%d",&n);
for(int k=;k<=n;k++)
{
int m;
scanf("%d",&m);
for(int i=;i<=m;i++)
scanf("%d",&a[i]);
int ans=;
for(int i=;i<=m;i++)
for(int j=i+;j<=m;j++)
if(a[i]>a[j])
ans++;
printf("Scenario #%d:\n%d\n\n",k,ans);
}
return ;
}
第二种归并排序, 对2个已经排好序的数列,进行再排序,只需要把2个数列,从头到尾,按顺序,谁小,谁就先进入tmp数组, 最后tmp数组一定排好序了,然后把TMP数组的元素复制回原数组中即可。
同理,如果我们知道2个子序列的逆序对数量,是否可以通过归并排序一样,求出整体的数量呢?显然是可以的。
这里有一个地方,当左边的数列的a[k]要进tmp数组了, 这个时候,如果右边的指针指向a+mid+p,就说明a[k]比a[mid+1]...a[mid + 2]..a[mid+3].....a[mid+p]都要大!【重要】
也就是说,对于a[k]而言,整个数列中, mid+ mid+2...mid+p都在k后面,同时a[k]比a[mid+1],a[mid+2]...a[mid+p]都要大。 那么显然是增加逆序对数量的。 通过整个方法,计算出整个逆序对的数量即可。
下面给出AC代码:
#include <iostream>
#include <cstdio>
#include <cstdlib>
using namespace std;
const int max_n = + ; int n, a[max_n];
int tmp[max_n], ans; void merge(int *a, int *tmp, int l, int mid, int r)
{
if (l >= r) return;
int i = l, j = mid + , k = ;
int count = , flag = ;
while (i <= mid && j <= r)
{
if (a[i] <= a[j])
{
tmp[k ++] = a[i++];
ans += j - mid - ;
}else tmp[k ++ ] = a[j++];
}
while (i <= mid) tmp[k ++] = a[i++], ans += r- mid;
while (j <= r) tmp[k ++] = a[j++];
for (i = ; i != k; ++ i) a[l + i] = tmp[i];
} void mergesort(int *a, int *tmp, int l, int r)
{
if (l >= r) return;
int mid = (l + r) / ;
mergesort(a, tmp, l, mid);
mergesort(a, tmp , mid + , r);
merge(a, tmp, l, mid, r);
} int main()
{
int tt;
scanf("%d", &tt);
for (int i = ; i <= tt; ++ i)
{
cout<<"Scenario #"<<i<<":"<<endl;
scanf("%d", &n);
ans = ;
for (int i = ; i != n; ++ i) scanf("%d", &a[i]);
mergesort(a, tmp, , n - );
cout<<ans<<endl<<endl;
}
}
第三种线段树单点更新
#include <map>
#include <iostream>
#include <set>
#include <cstdio>
#include <cstdlib>
using namespace std; const int max_n = + ; int n;
int a[max_n], count;
map<int, int>G;
map<int, int>::iterator it; struct node
{
int cd, key;
int ls, rs;
int L, R;
node():L(),R(),ls(),rs(),cd(),key(){};
void clear()
{
cd = key = ;
}
}t[max_n * ];
int tail = ; void init()
{
for (int i = ; i != max_n * ; ++ i) t[i].clear();
G.clear();
scanf("%d", &n);
for (int i = ; i != n; ++ i)
{
scanf("%d", &a[i]);
G[a[i]] = ;
}
count = ;
for (it = G.begin(); it != G.end(); ++ it) it -> second = ++ count;
} void make_tree(int now, int LL, int RR)
{
t[now].L = LL;
t[now].R = RR;
if (LL == RR) return;
int mid = (LL + RR)/ ;
make_tree(t[now].ls = ++ tail, LL, mid);
make_tree(t[now].rs = ++ tail, mid + , RR);
} void tran(int now)
{
int left_son = t[now].ls, right_son = t[now].rs;
t[left_son].cd += t[now].cd;
t[right_son].cd += t[now].cd;
t[now].key += t[now].cd;
t[now].cd = ;
} void ins(int now, int LL, int RR)
{ tran(now);
if (t[now].L == LL && t[now].R == RR)
{
t[now].cd ++;
return;
}
t[now].key ++;
int mid = (t[now].L + t[now].R) / ;
if (RR <= mid) {ins(t[now].ls, LL, RR); return;}
if (mid < LL) {ins(t[now].rs, LL, RR); return;}
ins(t[now].ls, LL, mid);
ins(t[now].rs, mid + , RR);
} int find(int now, int LL, int RR)//因为题目的特殊性,只会找一个……
{
tran(now);
if (t[now].L == LL && t[now].R == RR) return t[now].key;
int mid = (t[now].L + t[now].R) / ;
if (RR <= mid) return find(t[now].ls, LL, RR);
if (mid < LL) return find(t[now].rs, LL, RR);
cout<<"wtf?"<<endl;
} void doit()
{
int ans=;
for (int i = ; i != n; ++ i)
{
int num = G[a[i]];
ans += find(, num + , num + );
ins(, , num);
}
cout<<ans<<endl;
} int main()
{
int tt;
scanf("%d",&tt);
make_tree(, , );
for (int i = ; i <= tt; ++ i)
{
cout<<"Scenario #"<<i<<":"<<endl;
init();
doit();
cout<<endl;
}
}
另外还有几种好办法,贴一下
第四种:树状数组
树状数组, 其实和线段树道理一样。 但是对于树状数组,我会单独开一张好好研究哒。 这里就贴一下速度,并没有比线段树快很多……也许我的写法不好?【如果对树状数组有疑惑,可以看我下一篇文章,我会带领你们好好学会树状数组这个神奇的东西~】
#include <cstdio>
#include <cstdlib>
#include <map>
#include <cstring>
using namespace std;
#define lowbit(k) ((k)&(-k)) const int max_n = + ;
int n, a[max_n], s[max_n];
map<int, int>G;
map<int, int>::iterator it;
int count;
void init()
{
scanf("%d", &n);
G.clear();
count = ;
memset(s, , sizeof(s));
for (int i = ; i != n; ++ i)
{
scanf("%d", &a[i]);
G[a[i]] = ;
}
for (it = G.begin(); it != G.end(); ++ it) it -> second = ++ count;
} void ins(int k)
{
s[k] += ;
while ((k += lowbit(k)) <= ) s[k] += ;
} int ask(int k)//1..k的和
{
int tot = s[k];
while (k -= lowbit(k)) tot += s[k];
return tot;
} void doit()
{
int ans = ;
for (int i = ; i != n; ++ i)
{
int num = G[a[i]];
ans += ask(count) - ask(num);
ins(num);
}
printf("%d\n",ans);
} int main()
{
int tt;
scanf("%d", &tt);
for (int i = ; i <= tt; ++ i)
{
printf("Scenario #%d:\n",i);
init();
doit();
printf("\n");
}
}
第五种:平衡树
只要查找,当前在树中,有多少个数字比a[k]要大, 因为是按顺序插入的,所以这个数字的数量就是逆序对的个数
这里有一个小技巧,如果平衡树每次要删的话很麻烦,直接用写成struct,然后新的树就new,最后delete掉即可~
#include <iostream>
#include <cstdio>
#include <cstdlib>
using namespace std;
const int max_n = + ; int n;
const int maxint = 0x7fffffff; struct node
{
node *c[];
int key;
int size;
node():key(),size()
{
c[] = c[] = this;
}
node(int KEY_, node *a0, node *a1):
key(KEY_){c[] =a0, c[]=a1;}
node* rz(){return size = c[]->size + c[]->size + , this;}
}Tnull, *null=&Tnull; struct splay
{
node *root;
splay()
{
root = (new node(*null)) -> rz();
root -> key = maxint;
}
void zig(int d)
{
node *t = root -> c[d];
root -> c[d] = null -> c[d];
null -> c[d] = root;
root = t;
}
void zigzig(int d)
{
node *t = root -> c[d] -> c[d];
root -> c[d] -> c[d] = null -> c[d];
null -> c[d] = root -> c[d];
root -> c[d] = null -> c[d] -> c[!d];
null -> c[d] -> c[!d] = root -> rz();
root = t;
} void finish(int d)
{
node *t = null -> c[d], *p = root -> c[!d];
while (t != null)
{
t = null -> c[d] -> c[d];
null -> c[d] -> c[d] = p;
p = null -> c[d] -> rz();
null -> c[d] = t;
}
root -> c[!d] = p;
}
void select(int k)//谁有k个儿子
{
int t;
while ()
{
bool d = k > (t = root -> c[] -> size);
if (k == t || root -> c[d] == null) break;
if (d) k -= t + ;
bool dd = k > (t = root -> c[d] -> c[] -> size);
if (k == t || root -> c[d] -> c[dd] == null){zig(d); break;}
if (dd) k -= t + ;
d != dd ? zig(d), zig(dd) : zigzig(d);
}
finish(), finish();
root -> rz();
}
void search(int x)
{
while ()
{
bool d = x > root -> key;
if (root -> c[d] == null) break;
bool dd = x > root -> c[d] -> key;
if (root -> c[d] -> c[dd] == null){zig(d); break;}
d != dd ? zig(d), zig(dd) : zigzig(dd);
}
finish(), finish();
root -> rz();
if (x > root -> key) select(root -> c[] -> size + );
} void ins(int x)
{
search(x);
node *oldroot = root;
root = new node(x, oldroot -> c[],oldroot);
oldroot -> c[] = null;
oldroot -> rz();
root -> rz();
}
int sel(int k){return select(k - ), root -> key;}
int ran(int x){return search(x), root -> c[] -> size + ;}
}*sp; int main()
{
int tt;
scanf("%d", &tt);
for (int i = ; i <= tt; ++ i)
{
sp = new splay;
cout<<"Scenario #"<<i<<":"<<endl;
scanf("%d", &n);
int ans = ;
int tmp;
for (int i = ; i != n; ++ i)
{
scanf("%d", &tmp);
tmp = - tmp;
ans += sp -> ran(tmp) - ;
//cout<<sp.ran(tmp) - 1<<endl;
sp -> ins(tmp);
}
delete sp;
cout<<ans<<endl<<endl;
}
}
POJ 1804 Brainman(5种解法,好题,【暴力】,【归并排序】,【线段树单点更新】,【树状数组】,【平衡树】)的更多相关文章
- poj 2892---Tunnel Warfare(线段树单点更新、区间合并)
题目链接 Description During the War of Resistance Against Japan, tunnel warfare was carried out extensiv ...
- HDU 1166 敌兵布阵(线段树单点更新,板子题)
敌兵布阵 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submi ...
- POJ.3321 Apple Tree ( DFS序 线段树 单点更新 区间求和)
POJ.3321 Apple Tree ( DFS序 线段树 单点更新 区间求和) 题意分析 卡卡屋前有一株苹果树,每年秋天,树上长了许多苹果.卡卡很喜欢苹果.树上有N个节点,卡卡给他们编号1到N,根 ...
- POJ.2299 Ultra-QuickSort (线段树 单点更新 区间求和 逆序对 离散化)
POJ.2299 Ultra-QuickSort (线段树 单点更新 区间求和 逆序对 离散化) 题意分析 前置技能 线段树求逆序对 离散化 线段树求逆序对已经说过了,具体方法请看这里 离散化 有些数 ...
- CDOJ 1073 线段树 单点更新+区间查询 水题
H - 秋实大哥与线段树 Time Limit:1000MS Memory Limit:65535KB 64bit IO Format:%lld & %llu Submit S ...
- POJ 1804 Brainman
Brainman Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 7787 Accepted: 4247 Descript ...
- POJ 1804 Brainman(归并排序)
传送门 Description Background Raymond Babbitt drives his brother Charlie mad. Recently Raymond counted ...
- POJ 2892 Tunnel Warfare(线段树单点更新区间合并)
Tunnel Warfare Time Limit: 1000MS Memory Limit: 131072K Total Submissions: 7876 Accepted: 3259 D ...
- poj 2828(线段树单点更新)
Buy Tickets Time Limit: 4000MS Memory Limit: 65536K Total Submissions: 18561 Accepted: 9209 Desc ...
随机推荐
- iOS 获取当前应用的信息以及用户信息:版本号手机号手机型号
NSDictionary *infoDictionary = [[NSBundle mainBundle] infoDictionary]; CFShow(infoDictionary); // ap ...
- http中的get和post(二)
博客园精华区有篇文章< GET 和 POST 有什么区别?及为什么网上的多数答案都是错的 >,文中和回复多是对以下两个问题进行了深究: 长度限制 Url 是否隐藏数据 在我看来这两者都不是 ...
- php中static 静态关键字
一直依赖对于php中static关键字比较模糊,只是在单例模式中用过几次.上网查了查,没有找到很全的介绍,自己总结一下. 根据使用位置分为两部分 1.函数体中的静态变量 2.类中的静态属性和方法 1 ...
- lua元方法
lua中有元表的概念,元表类似于基类的功能, 在元表中有两个方法可以很好的认识元表: __index和__newindex __index用于查询 对表中的字段进行访问时,如果该表有元表,并且 表中没 ...
- vs发布项目webconfig替换语法
关于vs发布项目时webconfig替换语法也是最近才学到的东西,写这篇文章就当是作个备忘录吧,如果能帮助别人能够学习到webconfig如何替换那就再好不过了. 1.认识一下web项目下的web.D ...
- bzoj 1835: [ZJOI2010]base 基站选址
Description 有N个村庄坐落在一条直线上,第i(i>1)个村庄距离第1个村庄的距离为Di.需要在这些村庄中建立不超过K个通讯基站,在第i个村庄建立基站的费用为Ci.如果在距离第i个村庄 ...
- 细谈最近上线的Vue2.0项目(一)
8月初离职,来到现在的新东家负责一个新的项目.而我最近开发的两个webapp一直都是以Vue为主,这也是这篇文章的由来. 正文前的胡侃&一点点吐槽 在经历了两个公司不同的项目后,发现都存在一个 ...
- centos yum源配置 与yum配置文件
参考博客 http://www.cnblogs.com/mchina/archive/2013/01/04/2842275.html 1.centos . yum配置文件在目录 /etc/yum.re ...
- C# 判断网站是否能访问或者断链
参考网站:http://www.cnblogs.com/junny/archive/2012/10/30/2745978.html public bool CheckUrlVisit(string u ...
- Life in Changsha College-第一次冲刺
第一次冲刺任务 基于大局的全面性功能框架定位,要求能实现用户基于自己的需求进行的一系列操作. 用户故事 用户打开"生活在长大"的界面 程序首页展示校园服务,论坛等相关信息 用户选择 ...