题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=1245

Saving James Bond

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 2608    Accepted Submission(s): 505

Problem Description
This
time let us consider the situation in the movie "Live and Let Die" in
which James Bond, the world's most famous spy, was captured by a group
of drug dealers. He was sent to a small piece of land at the center of a
lake filled with crocodiles. There he performed the most daring action
to escape -- he jumped onto the head of the nearest crocodile! Before
the animal realized what was happening, James jumped again onto the next
big head... Finally he reached the bank before the last crocodile could
bite him (actually the stunt man was caught by the big mouth and barely
escaped with his extra thick boot).
Assume that the lake is a
100×100 square one. Assume that the center of the lake is at (0,0) and
the northeast corner at (50,50). The central island is a disk centered
at (0,0) with the diameter of 15. A number of crocodiles are in the lake
at various positions. Given the coordinates of each crocodile and the
distance that James could jump, you must tell him whether he could
escape.If he could,tell him the shortest length he has to jump and the
min-steps he has to jump for shortest length.
 
Input
The
input consists of several test cases. Each case starts with a line
containing n <= 100, the number of crocodiles, and d > 0, the
distance that James could jump. Then one line follows for each
crocodile, containing the (x, y) location of the crocodile. Note that x
and y are both integers, and no two crocodiles are staying at the same
position.
 
Output
For
each test case, if James can escape, output in one line the shortest
length he has to jump and the min-steps he has to jump for shortest
length. If it is impossible for James to escape that way, simply ouput
"can't be saved".
 
Sample Input
4 10
17 0
27 0
37 0
45 0
1 10
20 30
 
Sample Output
42.50 5
can't be saved
 
Author
weigang Lee
 
题意: 湖是以(0,0)为中心的边长为100的正方形,开始小人在湖中心直径为15的岛上,中间的湖有很多的鳄鱼,求小人可以通过鳄鱼跳到岸上吗,小人每次跳跃距离不超过d
题解: 这个题建图是关键,建好图,用dijk或者是spfa求最短路都可以,将中心岛看成第一个点,将岸边看成是第n+2个点,然后枚举所有的两点之间,如果之间距离小于d就建一条两点之间的边,
再枚举每个点和中心岛屿和岸边的距离和岛屿和岸边建边,然后求最短路即可
复习一下dijk
代码:
 #include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
#define INF 0x1fffffff
#define N 110
struct Edge{
int to;
int next;
double v;
}edge[N*N]; struct point{
double x;
double y;
}p[N]; int head[N];
int m;
double fd(double x1, double y1, double x2 , double y2)
{
double tm = (x2-x1)*(x2-x1) +(y2-y1)*(y2-y1);
return sqrt(tm);
}
double dis[N];
int cnt[N];
int Enct;
bool vis[N];
void init()
{
Enct = ;
memset(head,-,sizeof(head));
memset(vis, , sizeof(vis));
for(int i = ;i < N ; i++){
dis[i] = INF;
cnt[i] = INF;
}
cnt[] = ;
dis[] = ;
}
void add(int from , int to , double v)
{
if(v>m) return ;
edge[Enct].to = to;
edge[Enct].v = v;
edge[Enct].next = head[from];
head[from] = Enct++;
edge[Enct].to = from;
edge[Enct].v = v;
edge[Enct].next = head[to];
head[to] = Enct++;
}
int n; void dijk()
{
for(int i = ;i < n ;i++)
{
//for(int j = 0; j < n; j++) printf("%.2lf ", dis[j]); puts("");
int Min = INF ;
int Minc = INF ;
int k = -;
for(int j = ; j < n ; j++)
{
if(!vis[j]&&dis[j]<=Min)
{
if(dis[j]<Min)
{
Min = dis[j];
k = j;
}
else if(dis[j]==Min&&cnt[j]<Minc)
{
Minc = cnt[j];
k = j;
}
}
}
//printf("%d \n",k);
if(Min == INF) return ;
vis[k] = ;
for( int j = head[k] ; j != - ; j = edge[j].next)
{
Edge e = edge[j];
if(!vis[e.to]&&(dis[k]+e.v)==dis[e.to]&&cnt[k]+<cnt[e.to])
{
cnt[e.to] = cnt[k]+;
}
if(!vis[e.to]&&dis[k]+e.v<dis[e.to])
{
cnt[e.to] = cnt[k]+;
dis[e.to] = dis[k]+e.v;
}
}
}
} int main()
{
while(~scanf("%d%d",&n,&m))
{
init();
for(int i = ; i <= n ;i++)
{
double x, y;
scanf("%lf%lf",&x,&y);
p[i].x = x;
p[i].y = y;
double dd = -max(fabs(x), fabs(y));
if(dd <= m) add(i, n+, dd);
//if((x>=50-m&&x>y)||(x<=-(50-m)&&x<y)) add(i,n+1,(50-abs(x)));
//if((y>=50-m&&x<y)||(y<=-(50-m)&&x>y)) add(i,n+1,(50-abs(y)));
for(int j = ; j < i ; j++)
{
double flag = fd(p[i].x,p[i].y,p[j].x,p[j].y);
if(flag <= m) add(i,j,flag);
}
}
for(int i = ; i <= n; i++)
{
double tm = fd(p[i].x, p[i].y, , );
if(tm - 7.5 <= m) add(, i, tm - 7.5);
}
// for(int i = 0; i < n+2; i++)
// {
// printf("%d:", i);
//for(int j = head[i]; j != -1; j = edge[j].next) printf("(%d %.2lf) ", edge[j].to, edge[j].v);
// puts("");
// } n += ;
dijk();
if(dis[n-]==INF) puts("can't be saved");
else
printf("%.2f %d\n",dis[n-],cnt[n-]-);
}
return ;
}

Saving James Bond(dijk)的更多相关文章

  1. PTA 07-图5 Saving James Bond - Hard Version (30分)

    07-图5 Saving James Bond - Hard Version   (30分) This time let us consider the situation in the movie ...

  2. Saving James Bond - Easy Version (MOOC)

    06-图2 Saving James Bond - Easy Version (25 分) This time let us consider the situation in the movie & ...

  3. pat06-图4. Saving James Bond - Hard Version (30)

    06-图4. Saving James Bond - Hard Version (30) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作 ...

  4. pat05-图2. Saving James Bond - Easy Version (25)

    05-图2. Saving James Bond - Easy Version (25) 时间限制 200 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作 ...

  5. Saving James Bond - Hard Version

    07-图5 Saving James Bond - Hard Version(30 分) This time let us consider the situation in the movie &q ...

  6. Saving James Bond - Easy Version 原创 2017年11月23日 13:07:33

    06-图2 Saving James Bond - Easy Version(25 分) This time let us consider the situation in the movie &q ...

  7. PAT Saving James Bond - Easy Version

    Saving James Bond - Easy Version This time let us consider the situation in the movie "Live and ...

  8. 06-图2 Saving James Bond - Easy Version

    题目来源:http://pta.patest.cn/pta/test/18/exam/4/question/625 This time let us consider the situation in ...

  9. PTA 06-图2 Saving James Bond - Easy Version (25分)

    This time let us consider the situation in the movie "Live and Let Die" in which James Bon ...

随机推荐

  1. Spring+MVC+Mybatis整合

    本文是对慕课网上"搞定SSM开发"路径的系列课程的总结,详细的项目文档和课程总结放在github上了.点击查看 什么是秒杀业务 网站售卖某产品时,规定在某个日期开始售卖限量的产品, ...

  2. JavaWeb之数据源连接池(4)---自定义数据源连接池

    [续上文<JavaWeb之数据源连接池(3)---Tomcat>] 我们已经 了解了DBCP,C3P0,以及Tomcat内置的数据源连接池,那么,这些数据源连接池是如何实现的呢?为了究其原 ...

  3. Spark源码剖析(五):Master原理与源码剖析(下)

    一. 状态改变机制源码分析 在剖析Master核心的资源调度算法之前,让我们先来看看Master的状态改变机制. Driver状态改变  可以看出,一旦Driver状态发生改变,基本没有好事情,后果要 ...

  4. vue入坑总结

    1.Do not mount Vue to <html> or <body> - mount to normal elements instead. Vue2.x之后不推荐挂载 ...

  5. lesson - 7 vim 详解

    1. vim简介vim是从vi发展出来 ,第一个版本由布莱姆·米勒在1991年发布 ,它基于VIM许可证,兼容GPL. 官网 www.vim.org 2. 安装vim: yum install -y ...

  6. CAS在Java类中的应用

    CAS 这个指令全称 compare and swap 即比较替换指令,在现代处理器新加入的指令.指导思想:基于乐观锁机制.比较一个变量在内存值中的值和变量的当前值(旧值).如果相等,则认为该变量没有 ...

  7. 用python在excel中读取与生成随机数写入excel中

    今天是我第一次发博客,就关于python在excel中的应用作为我的第一篇吧. 具体要求是:在一份已知的excel表格中读取学生的学号与姓名,再将这些数据放到新的excel表中的第一列与第二列,最后再 ...

  8. shell脚本异步日志分析-接口耗时、可用率

    背景:现有日志接入日志报表大盘,为了避免作业高峰期间(双十一),系统也要观测系统整体情况,因此提出了观测近五分钟,接口成功率以及耗时等工具(默认统计最近五分钟,并进行结果汇总统计) 使用说明 前提:p ...

  9. Node.js 蚕食计划(三)—— Express 启航

    如果看过上一篇<Node.js 蚕食计划>,就会发现手动搭建一个 web 服务器还是比较繁琐 而 express 就是一个可以极大地提高开发效率的 web 开发框架 一.创建项目 在 ex ...

  10. 微信小程序开发之模板

    一.简介 WXML提供模板(template),可以在模板中定义代码片段,然后在不同的地方调用. 定义模板 使用name属性,作为模板的名字.然后在<template/>内定义代码片段,如 ...