DashText-快速开始
快速开始
DashText,是向量检索服务DashVector推荐使用的稀疏向量编码器(Sparse Vector Encoder),DashText可通过BM25算法将原始文本转换为稀疏向量(Sparse Vector)表达,通过DashText可大幅度简化使用DashVector[关键词感知检索]能力。
说明
需要使用您的api-key替换示例中的YOUR_API_KEY、您的Cluster Endpoint替换示例中的YOUR_CLUSTER_ENDPOINT,代码才能正常运行。
本示例仅对Sparse Vector进行功能演示,请根据实际情况设置您的向量维度。简化起见,本文示例代码中将向量(Dense Vector)维度设置为4。
Step1. 创建支持Sparse Vector的Collection
Python示例
import dashvector
client = dashvector.Client(api_key='YOUR_API_KEY', endpoint='YOUR_CLUSTER_ENDPOINT')
assert client
ret = client.create('hybrid_collection', dimension=4, metric='dotproduct')
assert ret
collection = client.get('hybrid_collection')
assert collection
Java示例
import com.aliyun.dashvector.DashVectorClient;
import com.aliyun.dashvector.DashVectorCollection;
import com.aliyun.dashvector.models.requests.CreateCollectionRequest;
import com.aliyun.dashvector.models.responses.Response;
import com.aliyun.dashvector.proto.CollectionInfo;
DashVectorClient client =
new DashVectorClient("YOUR_API_KEY", "YOUR_CLUSTER_ENDPOINT");
CreateCollectionRequest request = CreateCollectionRequest.builder()
.name("hybrid_collection")
.dimension(4)
.metric(CollectionInfo.Metric.dotproduct)
.dataType(CollectionInfo.DataType.FLOAT)
.build();
Response<Void> response = client.create(request);
System.out.println(response);
DashVectorCollection collection = client.get("hybrid_collection");
重要
仅内积度量(metric='dotproduct')支持Sparse Vector功能
Step2. 创建SparseVectorEncoder
使用内置Encoder
Python示例
from dashtext import SparseVectorEncoder
encoder = SparseVectorEncoder.default()
Java示例
import com.aliyun.dashtext.encoder.SparseVectorEncoder;
SparseVectorEncoder encoder = SparseVectorEncoder.getDefaultInstance();
说明
内置Encoder使用中文Wiki语料进行训练,采用Jieba进行中文分词
基于自有语料创建Encoder
Python示例
from dashtext import SparseVectorEncoder
encoder = SparseVectorEncoder()
# (全部)自有语料
corpus = [
"向量检索服务DashVector基于阿里云自研的高效向量引擎Proxima内核,提供具备水平拓展能力的云原生、全托管的向量检索服务",
"DashVector将其强大的向量管理、向量查询等多样化能力,通过简洁易用的SDK/API接口透出,方便被上层AI应用迅速集成",
"从而为包括大模型生态、多模态AI搜索、分子结构分析在内的多种应用场景,提供所需的高效向量检索能力",
"简单灵活、开箱即用的SDK,使用极简代码即可实现向量管理",
"自研向量相似性比对算法,快速高效稳定服务",
"Schema-free设计,通过Schema实现任意条件下的组合过滤查询"
]
# 基于自有语料训练Encoder
encoder.train(corpus)
Java示例
import com.aliyun.dashtext.encoder.SparseVectorEncoder;
import java.util.*;
SparseVectorEncoder encoder = new SparseVectorEncoder();
//(全部)自有语料
List<String> corpus = Arrays.asList(
"向量检索服务DashVector基于阿里云自研的高效向量引擎Proxima内核,提供具备水平拓展能力的云原生、全托管的向量检索服务",
"DashVector将其强大的向量管理、向量查询等多样化能力,通过简洁易用的SDK/API接口透出,方便被上层AI应用迅速集成",
"从而为包括大模型生态、多模态AI搜索、分子结构分析在内的多种应用场景,提供所需的高效向量检索能力",
"简单灵活、开箱即用的SDK,使用极简代码即可实现向量管理",
"自研向量相似性比对算法,快速高效稳定服务",
"Schema-free设计,通过Schema实现任意条件下的组合过滤查询"
);
// 基于自有语料训练Encoder
encoder.train(corpus);
说明
内置Encoder可直接使用,无需使用原始语料进行训练,使用起来更加方便,同时泛化能力较强。但面对原始语料中专业术语较多等场景,准确性偏弱
基于自有语料创建Encoder,需要预先根据(全部)原始语料进行训练,准确性较高,自有语料创建Encoder具体使用可参考进阶使用
用户需根据自身业务场景和需求来选择Encoder,对于特定领域(大量专属词汇)的场景推荐基于自有语料创建Encoder
Step3. 插入带有Sparse Vector的Doc
Python示例
from dashvector import Doc
document = "向量检索服务DashVector基于阿里云自研的高效向量引擎Proxima内核,提供具备水平拓展能力的云原生、全托管的向量检索服务。"
doc_sparse_vector = encoder.encode_documents(document)
print(doc_sparse_vector)
# 基于内置Encoder的output:
# {380823393: 0.7262431704356519, 414191989: 0.7262431704356519, 565176162: 0.7262431704356519, 904594806: 0.7262431704356519, 1005505802: 0.7262431704356519, 1169440797: 0.8883757984694465, 1240922502: 0.7262431704356519, 1313971048: 0.7262431704356519, 1317077351: 0.7262431704356519, 1490140460: 0.7262431704356519, 1574737055: 0.7262431704356519, 1760434515: 0.7262431704356519, 2045788977: 0.8414146776926797, 2141666983: 0.7262431704356519, 2509543087: 0.7262431704356519, 3180265193: 0.7262431704356519, 3845702398: 0.7262431704356519, 4106887295: 0.7262431704356519}
collection.insert(Doc(
id='A',
vector=[0.1, 0.2, 0.3, 0.4],
sparse_vector=doc_sparse_vector
))
Java示例
String document = "向量检索服务DashVector基于达摩院自研的高效向量引擎Proxima内核,提供具备水平拓展能力的云原生、全托管的向量检索服务。";
Map<Long, Float> sparseVector = encoder.encodeDocuments(document);
System.out.println(sparseVector);
// 基于内置Encoder的output:
// {380823393: 0.7262431704356519, 414191989: 0.7262431704356519, 565176162: 0.7262431704356519, 904594806: 0.7262431704356519, 1005505802: 0.7262431704356519, 1169440797: 0.8883757984694465, 1240922502: 0.7262431704356519, 1313971048: 0.7262431704356519, 1317077351: 0.7262431704356519, 1490140460: 0.7262431704356519, 1574737055: 0.7262431704356519, 1760434515: 0.7262431704356519, 2045788977: 0.8414146776926797, 2141666983: 0.7262431704356519, 2509543087: 0.7262431704356519, 3180265193: 0.7262431704356519, 3845702398: 0.7262431704356519, 4106887295: 0.7262431704356519}
Vector vector = Vector.builder().value(Arrays.asList(0.1f, 0.2f, 0.3f, 0.4f)).build();
// 构建带有Sparse Vector的Doc
Doc doc = Doc.builder()
.id("28")
.sparseVector(sparseVector)
.vector(vector)
.build();
// 插入带有Sparse Vector的Doc
Response<Void> response = collection.insert(InsertDocRequest.builder().doc(doc).build());
Step4. 关键词感知的向量检索
Python示例
query = "什么是向量检索服务?"
sparse_vector = encoder.encode_queries(query)
print(sparse_vector)
# 基于内置Encoder的output:
# {1169440797: 0.2947158712590364, 2045788977: 0.7052841287409635}
docs = collection.query(
vector=[0.1, 0.1, 0.1, 0.1],
sparse_vector=sparse_vector
)
Java示例
String query = "什么是向量检索服务?";
Map<Long, Float> sparseVector = encoder.encodeQueries(query);
System.out.println(sparseVector);
// 基于内置Encoder的output:
// {1169440797: 0.2947158712590364, 2045788977: 0.7052841287409635}
Vector vector = Vector.builder().value(Arrays.asList(0.1f, 0.2f, 0.3f, 0.4f)).build();
// 构建QueryDocRequest
QueryDocRequest request = QueryDocRequest.builder()
.vector(vector)
.sparseVector(sparseVector)
.topk(100)
.includeVector(true)
.build();
Response<List<Doc>> response = collection.query(request);
System.out.println(response);
Step5. 基于权重的关键词+语义检索
Python示例
from dashtext import combine_dense_and_sparse
query = "什么是向量检索服务?"
sparse_vector = encoder.encode_queries(query)
# 权重因子
alpha = 0.7
dense_vector = [0.1, 0.1, 0.1, 0.1]
scaled_dense_vector, scaled_sparse_vector = combine_dense_and_sparse(dense_vector, sparse_vector, alpha)
docs = collection.query(
vector=scaled_dense_vector,
sparse_vector=scaled_sparse_vector
)
Java示例
String query = "什么是向量检索服务?";
Map<Long, Float> sparseVector = encoder.encodeQueries(query);
System.out.println(sparse_vector);
// 基于内置Encoder的output:
// {1169440797: 0.2947158712590364, 2045788977: 0.7052841287409635}
Vector denseVector = Vector.builder().value(Arrays.asList(0.1f, 0.2f, 0.3f, 0.4f)).build();
// 通过alpha因子调整稠密向量和稀疏向量
float alpha = 0.1;
sparse_vector.forEach((key, value) -> sparse_vector.put(key, value * (1 - alpha)));
denseVector = Vector.builder().value(
denseVector.getValue().stream().map(number -> number.floatValue() * alpha).collect(Collectors.toList())
).build();
// 构建QueryDocRequest
QueryDocRequest request = QueryDocRequest.builder()
.vector(denseVector)
.sparseVector(sparseVector)
.topk(100)
.includeVector(true)
.build();
Response<List<Doc>> response = collection.query(request);
System.out.println(response);
说明
参数alpha是控制稠密向量距离和稀疏向量距离加权的权重因子,alpha=0.0表示只采用稀疏向量进行距离度量,alpha=1.0表示只采用稠密向量进行距离度量。
API参考
更多DashText API详情可参考:
- Python SDK:https://pypi.org/project/dashtext/
DashText-快速开始的更多相关文章
- 快速构建H5单页面切换骨架
在Web App和Hybrid App横行的时代,为了拥有更好的用户体验,单页面应用顺势而生,单页面应用简称`SPA`,即Single Page Application,就是只有一个HTML页面的应用 ...
- .net core快速上手
2014年11月12日的Connect ();开发者活动上宣布将.NET堆栈基于MIT协议开源,并且提供开源保证,托管在Github上.当时的版本与最终目标相距甚远,然而有一点可以肯定的是,这是一个与 ...
- Web Api 入门实战 (快速入门+工具使用+不依赖IIS)
平台之大势何人能挡? 带着你的Net飞奔吧!:http://www.cnblogs.com/dunitian/p/4822808.html 屁话我也就不多说了,什么简介的也省了,直接简单概括+demo ...
- SignalR快速入门 ~ 仿QQ即时聊天,消息推送,单聊,群聊,多群公聊(基础=》提升)
SignalR快速入门 ~ 仿QQ即时聊天,消息推送,单聊,群聊,多群公聊(基础=>提升,5个Demo贯彻全篇,感兴趣的玩才是真的学) 官方demo:http://www.asp.net/si ...
- 快速搭建springmvc+spring data jpa工程
一.前言 这里简单讲述一下如何快速使用springmvc和spring data jpa搭建后台开发工程,并提供了一个简单的demo作为参考. 二.创建maven工程 http://www.cnblo ...
- 如何快速优化手游性能问题?从UGUI优化说起
WeTest 导读 本文作者从自身多年的Unity项目UI开发及优化的经验出发,从UGUI,CPU,GPU以及unity特有资源等几个维度,介绍了unity手游性能优化的一些方法. 在之前的文 ...
- Photoshop将普通照片快速制作二次元漫画风格效果
今天为大家分享Photoshop将普通照片快速制作二次元漫画风格效果,教程很不错,对于喜欢漫画的朋友可以参考本文,希望能对大家有所帮助! 一提到日本动画电影,大家第一印象肯定是宫崎骏,但是日本除了宫崎 ...
- CRL快速开发框架系列教程十三(嵌套查询)
本系列目录 CRL快速开发框架系列教程一(Code First数据表不需再关心) CRL快速开发框架系列教程二(基于Lambda表达式查询) CRL快速开发框架系列教程三(更新数据) CRL快速开发框 ...
- CRL快速开发框架系列教程十二(MongoDB支持)
本系列目录 CRL快速开发框架系列教程一(Code First数据表不需再关心) CRL快速开发框架系列教程二(基于Lambda表达式查询) CRL快速开发框架系列教程三(更新数据) CRL快速开发框 ...
- CRL快速开发框架系列教程十一(大数据分库分表解决方案)
本系列目录 CRL快速开发框架系列教程一(Code First数据表不需再关心) CRL快速开发框架系列教程二(基于Lambda表达式查询) CRL快速开发框架系列教程三(更新数据) CRL快速开发框 ...
随机推荐
- 洛谷P1209修理牛棚 Barn Repair
[USACO1.3] 修理牛棚 Barn Repair 题目描述 在一个月黑风高的暴风雨夜,Farmer John 的牛棚的屋顶.门被吹飞了 好在许多牛正在度假,所以牛棚没有住满. 牛棚一个紧挨着另一 ...
- JavaWeb中的Tomcat,Servlet详解
JavaWeb JavaWeb技术主要包括服务器技术(后端),如Tomcat,Servlet,JSP等待,以及客户端技术(前端)如HTML,CSS,JavaScript等等 Web服务器 Web服务器 ...
- OpenTiny HUICharts开源发布,带你了解一个简单、易上手的图表组件库
摘要:目前 OpenTiny HUICharts 已经成功落地在华为内部100多个产品中,持续提升了用户的可视化体验. 本文分享自华为云社区<OpenTiny HUICharts 正式开源发布, ...
- VUE—CLI学习
https://cli.vuejs.org/zh/guide/creating-a-project.html#vue-create 需要的自己来看吧 关于旧版本 Vue CLI 的包名称由 vue-c ...
- 嵌入式工程师到底要不要学习ARM汇编指令?arm学习文章汇总
嵌入式工程师到底要不要学习ARM汇编指令? 网上搜索这个问题,答案很多,大部分的建议是不要学汇编,只要学C语言. 而一口君作为一个十几年经验的驱动工程师,个人认为,汇编语言还是需要掌握的,想要搞精.搞 ...
- 使用SiliconCloud快速体验SimpleRAG(手把手教程)
SiliconCloud介绍 SiliconCloud 基于优秀的开源基础模型,提供高性价比的 GenAI 服务. 不同于多数大模型云服务平台只提供自家大模型 API,SiliconCloud上架了包 ...
- LaTeX 编译中文文档
介绍 LaTeX 原生不支持中文.为了添加中文的功能,我们需要引入宏包.XeLaTeX 原生支持中文.不过由于默认使用的字体是英文字体,我们需要设置中文字体之后才能用.不过由于一些原因,在使用 LaT ...
- 【Mac + Appium + Java1.8(三)】之IOS自动化环境安装配置以及简单测试用例编写(模拟器、真机)
前提条件: =========================================== 1.Xcode版本为Xcode10及以上2.Appium版本必须为1.9及以上,因为Xcode为10 ...
- FCA-FineBI最新版考试答案,全全全!!!
FCA-FineBI最新版考试答案,全全全!!!-CSDN博客同博客 Part.1:判断 第1题 判断题 「TODATE」函数或者「DATE」函数,可以将文本字段或数值字段转变成时间类型的字段.(得 ...
- CSS & JS Effect – Dialog Modal
效果 参考: Youtube – Create a Simple Popup Modal Youtube – Create a Modal (Popup) with HTML/CSS and Java ...