快速开始

DashText,是向量检索服务DashVector推荐使用的稀疏向量编码器(Sparse Vector Encoder),DashText可通过BM25算法将原始文本转换为稀疏向量(Sparse Vector)表达,通过DashText可大幅度简化使用DashVector[关键词感知检索]能力。

说明

  1. 需要使用您的api-key替换示例中的YOUR_API_KEY、您的Cluster Endpoint替换示例中的YOUR_CLUSTER_ENDPOINT,代码才能正常运行。

  2. 本示例仅对Sparse Vector进行功能演示,请根据实际情况设置您的向量维度。简化起见,本文示例代码中将向量(Dense Vector)维度设置为4。

Step1. 创建支持Sparse Vector的Collection

Python示例

import dashvector

client = dashvector.Client(api_key='YOUR_API_KEY', endpoint='YOUR_CLUSTER_ENDPOINT')
assert client ret = client.create('hybrid_collection', dimension=4, metric='dotproduct')
assert ret collection = client.get('hybrid_collection')
assert collection

Java示例

import com.aliyun.dashvector.DashVectorClient;
import com.aliyun.dashvector.DashVectorCollection;
import com.aliyun.dashvector.models.requests.CreateCollectionRequest;
import com.aliyun.dashvector.models.responses.Response;
import com.aliyun.dashvector.proto.CollectionInfo; DashVectorClient client =
new DashVectorClient("YOUR_API_KEY", "YOUR_CLUSTER_ENDPOINT"); CreateCollectionRequest request = CreateCollectionRequest.builder()
.name("hybrid_collection")
.dimension(4)
.metric(CollectionInfo.Metric.dotproduct)
.dataType(CollectionInfo.DataType.FLOAT)
.build(); Response<Void> response = client.create(request);
System.out.println(response); DashVectorCollection collection = client.get("hybrid_collection");

重要

仅内积度量(metric='dotproduct')支持Sparse Vector功能

Step2. 创建SparseVectorEncoder

使用内置Encoder

Python示例

from dashtext import SparseVectorEncoder

encoder = SparseVectorEncoder.default()

Java示例

import com.aliyun.dashtext.encoder.SparseVectorEncoder;

SparseVectorEncoder encoder = SparseVectorEncoder.getDefaultInstance();

说明

内置Encoder使用中文Wiki语料进行训练,采用Jieba进行中文分词

基于自有语料创建Encoder

Python示例

from dashtext import SparseVectorEncoder

encoder = SparseVectorEncoder()

# (全部)自有语料
corpus = [
"向量检索服务DashVector基于阿里云自研的高效向量引擎Proxima内核,提供具备水平拓展能力的云原生、全托管的向量检索服务",
"DashVector将其强大的向量管理、向量查询等多样化能力,通过简洁易用的SDK/API接口透出,方便被上层AI应用迅速集成",
"从而为包括大模型生态、多模态AI搜索、分子结构分析在内的多种应用场景,提供所需的高效向量检索能力",
"简单灵活、开箱即用的SDK,使用极简代码即可实现向量管理",
"自研向量相似性比对算法,快速高效稳定服务",
"Schema-free设计,通过Schema实现任意条件下的组合过滤查询"
] # 基于自有语料训练Encoder
encoder.train(corpus)

Java示例

import com.aliyun.dashtext.encoder.SparseVectorEncoder;
import java.util.*; SparseVectorEncoder encoder = new SparseVectorEncoder(); //(全部)自有语料
List<String> corpus = Arrays.asList(
"向量检索服务DashVector基于阿里云自研的高效向量引擎Proxima内核,提供具备水平拓展能力的云原生、全托管的向量检索服务",
"DashVector将其强大的向量管理、向量查询等多样化能力,通过简洁易用的SDK/API接口透出,方便被上层AI应用迅速集成",
"从而为包括大模型生态、多模态AI搜索、分子结构分析在内的多种应用场景,提供所需的高效向量检索能力",
"简单灵活、开箱即用的SDK,使用极简代码即可实现向量管理",
"自研向量相似性比对算法,快速高效稳定服务",
"Schema-free设计,通过Schema实现任意条件下的组合过滤查询"
); // 基于自有语料训练Encoder
encoder.train(corpus);

说明

  1. 内置Encoder可直接使用,无需使用原始语料进行训练,使用起来更加方便,同时泛化能力较强。但面对原始语料中专业术语较多等场景,准确性偏弱

  2. 基于自有语料创建Encoder,需要预先根据(全部)原始语料进行训练,准确性较高,自有语料创建Encoder具体使用可参考进阶使用

  3. 用户需根据自身业务场景和需求来选择Encoder,对于特定领域(大量专属词汇)的场景推荐基于自有语料创建Encoder

Step3. 插入带有Sparse Vector的Doc

Python示例

from dashvector import Doc

document = "向量检索服务DashVector基于阿里云自研的高效向量引擎Proxima内核,提供具备水平拓展能力的云原生、全托管的向量检索服务。"
doc_sparse_vector = encoder.encode_documents(document) print(doc_sparse_vector)
# 基于内置Encoder的output:
# {380823393: 0.7262431704356519, 414191989: 0.7262431704356519, 565176162: 0.7262431704356519, 904594806: 0.7262431704356519, 1005505802: 0.7262431704356519, 1169440797: 0.8883757984694465, 1240922502: 0.7262431704356519, 1313971048: 0.7262431704356519, 1317077351: 0.7262431704356519, 1490140460: 0.7262431704356519, 1574737055: 0.7262431704356519, 1760434515: 0.7262431704356519, 2045788977: 0.8414146776926797, 2141666983: 0.7262431704356519, 2509543087: 0.7262431704356519, 3180265193: 0.7262431704356519, 3845702398: 0.7262431704356519, 4106887295: 0.7262431704356519} collection.insert(Doc(
id='A',
vector=[0.1, 0.2, 0.3, 0.4],
sparse_vector=doc_sparse_vector
))

Java示例

String document = "向量检索服务DashVector基于达摩院自研的高效向量引擎Proxima内核,提供具备水平拓展能力的云原生、全托管的向量检索服务。";
Map<Long, Float> sparseVector = encoder.encodeDocuments(document); System.out.println(sparseVector);
// 基于内置Encoder的output:
// {380823393: 0.7262431704356519, 414191989: 0.7262431704356519, 565176162: 0.7262431704356519, 904594806: 0.7262431704356519, 1005505802: 0.7262431704356519, 1169440797: 0.8883757984694465, 1240922502: 0.7262431704356519, 1313971048: 0.7262431704356519, 1317077351: 0.7262431704356519, 1490140460: 0.7262431704356519, 1574737055: 0.7262431704356519, 1760434515: 0.7262431704356519, 2045788977: 0.8414146776926797, 2141666983: 0.7262431704356519, 2509543087: 0.7262431704356519, 3180265193: 0.7262431704356519, 3845702398: 0.7262431704356519, 4106887295: 0.7262431704356519} Vector vector = Vector.builder().value(Arrays.asList(0.1f, 0.2f, 0.3f, 0.4f)).build(); // 构建带有Sparse Vector的Doc
Doc doc = Doc.builder()
.id("28")
.sparseVector(sparseVector)
.vector(vector)
.build(); // 插入带有Sparse Vector的Doc
Response<Void> response = collection.insert(InsertDocRequest.builder().doc(doc).build());

Step4. 关键词感知的向量检索

Python示例

query = "什么是向量检索服务?"
sparse_vector = encoder.encode_queries(query) print(sparse_vector)
# 基于内置Encoder的output:
# {1169440797: 0.2947158712590364, 2045788977: 0.7052841287409635} docs = collection.query(
vector=[0.1, 0.1, 0.1, 0.1],
sparse_vector=sparse_vector
)

Java示例

String query = "什么是向量检索服务?";

Map<Long, Float> sparseVector = encoder.encodeQueries(query);

System.out.println(sparseVector);
// 基于内置Encoder的output:
// {1169440797: 0.2947158712590364, 2045788977: 0.7052841287409635} Vector vector = Vector.builder().value(Arrays.asList(0.1f, 0.2f, 0.3f, 0.4f)).build(); // 构建QueryDocRequest
QueryDocRequest request = QueryDocRequest.builder()
.vector(vector)
.sparseVector(sparseVector)
.topk(100)
.includeVector(true)
.build(); Response<List<Doc>> response = collection.query(request);
System.out.println(response);

Step5. 基于权重的关键词+语义检索

Python示例

from dashtext import combine_dense_and_sparse

query = "什么是向量检索服务?"
sparse_vector = encoder.encode_queries(query) # 权重因子
alpha = 0.7
dense_vector = [0.1, 0.1, 0.1, 0.1]
scaled_dense_vector, scaled_sparse_vector = combine_dense_and_sparse(dense_vector, sparse_vector, alpha) docs = collection.query(
vector=scaled_dense_vector,
sparse_vector=scaled_sparse_vector
)

Java示例

String query = "什么是向量检索服务?";

Map<Long, Float> sparseVector = encoder.encodeQueries(query);

System.out.println(sparse_vector);
// 基于内置Encoder的output:
// {1169440797: 0.2947158712590364, 2045788977: 0.7052841287409635} Vector denseVector = Vector.builder().value(Arrays.asList(0.1f, 0.2f, 0.3f, 0.4f)).build(); // 通过alpha因子调整稠密向量和稀疏向量
float alpha = 0.1;
sparse_vector.forEach((key, value) -> sparse_vector.put(key, value * (1 - alpha)));
denseVector = Vector.builder().value(
denseVector.getValue().stream().map(number -> number.floatValue() * alpha).collect(Collectors.toList())
).build(); // 构建QueryDocRequest
QueryDocRequest request = QueryDocRequest.builder()
.vector(denseVector)
.sparseVector(sparseVector)
.topk(100)
.includeVector(true)
.build(); Response<List<Doc>> response = collection.query(request);
System.out.println(response);

说明

参数alpha是控制稠密向量距离和稀疏向量距离加权的权重因子,alpha=0.0表示只采用稀疏向量进行距离度量,alpha=1.0表示只采用稠密向量进行距离度量。

API参考

更多DashText API详情可参考:

DashText-快速开始的更多相关文章

  1. 快速构建H5单页面切换骨架

    在Web App和Hybrid App横行的时代,为了拥有更好的用户体验,单页面应用顺势而生,单页面应用简称`SPA`,即Single Page Application,就是只有一个HTML页面的应用 ...

  2. .net core快速上手

    2014年11月12日的Connect ();开发者活动上宣布将.NET堆栈基于MIT协议开源,并且提供开源保证,托管在Github上.当时的版本与最终目标相距甚远,然而有一点可以肯定的是,这是一个与 ...

  3. Web Api 入门实战 (快速入门+工具使用+不依赖IIS)

    平台之大势何人能挡? 带着你的Net飞奔吧!:http://www.cnblogs.com/dunitian/p/4822808.html 屁话我也就不多说了,什么简介的也省了,直接简单概括+demo ...

  4. SignalR快速入门 ~ 仿QQ即时聊天,消息推送,单聊,群聊,多群公聊(基础=》提升)

     SignalR快速入门 ~ 仿QQ即时聊天,消息推送,单聊,群聊,多群公聊(基础=>提升,5个Demo贯彻全篇,感兴趣的玩才是真的学) 官方demo:http://www.asp.net/si ...

  5. 快速搭建springmvc+spring data jpa工程

    一.前言 这里简单讲述一下如何快速使用springmvc和spring data jpa搭建后台开发工程,并提供了一个简单的demo作为参考. 二.创建maven工程 http://www.cnblo ...

  6. 如何快速优化手游性能问题?从UGUI优化说起

    WeTest 导读   本文作者从自身多年的Unity项目UI开发及优化的经验出发,从UGUI,CPU,GPU以及unity特有资源等几个维度,介绍了unity手游性能优化的一些方法.   在之前的文 ...

  7. Photoshop将普通照片快速制作二次元漫画风格效果

    今天为大家分享Photoshop将普通照片快速制作二次元漫画风格效果,教程很不错,对于喜欢漫画的朋友可以参考本文,希望能对大家有所帮助! 一提到日本动画电影,大家第一印象肯定是宫崎骏,但是日本除了宫崎 ...

  8. CRL快速开发框架系列教程十三(嵌套查询)

    本系列目录 CRL快速开发框架系列教程一(Code First数据表不需再关心) CRL快速开发框架系列教程二(基于Lambda表达式查询) CRL快速开发框架系列教程三(更新数据) CRL快速开发框 ...

  9. CRL快速开发框架系列教程十二(MongoDB支持)

    本系列目录 CRL快速开发框架系列教程一(Code First数据表不需再关心) CRL快速开发框架系列教程二(基于Lambda表达式查询) CRL快速开发框架系列教程三(更新数据) CRL快速开发框 ...

  10. CRL快速开发框架系列教程十一(大数据分库分表解决方案)

    本系列目录 CRL快速开发框架系列教程一(Code First数据表不需再关心) CRL快速开发框架系列教程二(基于Lambda表达式查询) CRL快速开发框架系列教程三(更新数据) CRL快速开发框 ...

随机推荐

  1. 解决input自动填充账号密码时的背景色

      input:-webkit-autofill { box-shadow:0 0 0 1000px white inset !important; } input:-internal-autofil ...

  2. Edge实验性功能中文翻译

    平行下载 启用平行下载以加速下载速度.- Mac, Windows, Linux, Android #enable-parallel-downloading 已启用 临时恢复 M125 标记 临时恢复 ...

  3. Codeforces Round894.D

    题目:D. Ice Cream Balls 题目链接:https://codeforces.com/contest/1862/problem/D 思路:二分找到当所有冰淇淋球类型不同的情况下,假设记位 ...

  4. 代码随想录Day20

    235. 二叉搜索树的最近公共祖先 给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先. 百度百科中最近公共祖先的定义为:"对于有根树 T 的两个结点 p.q,最近公共祖先表示为一个 ...

  5. 【Python自动化】之运用Git+jenkins集成来运行展示pytest+allure测试报告

    目录: 一.安装allure 二.生成allure报告 三.结合jenkins来集成pytest+allure 四.结合Git集成Jenkins+Pytest+Allure测试报告 五.附录 一.安装 ...

  6. el-form 自定义验证规则,手动触发某项验证

    1. ui <el-form ref="xXXForm" :rules="XXXFormRules" > <el-form-item labe ...

  7. 省钱的开源项目「GitHub 热点速览」

    本期,我从上周的热门开源项目中挑选了 5 个既省钱又省事,还好玩的开源项目. 首先,推荐的是省钱的电动汽车智能充电管理平台 evcc,它可以根据分时电价智能安排电动车充电时间,从而降低电费,如果你家还 ...

  8. in notin exists not exists 性能优化算法总结

    in notin exists not exists 性能优化算法总结 1.1. in 和 exists 区别 1.2. not in 能不能走索引 1.3. not in 和 join 的关系 1. ...

  9. 【JS设计模式笔记】给我一张名片-工厂方法模式(创建型)

    广告展现 例如,关于计算机培训广告资源需要投放,一批是Java的用绿色字体,一批是PHP的,用黄色字体,红色背景. // 创建Java学科类 var Java = function (content) ...

  10. ASP.NET Core – Static Files

    前言 记入一些冷门的知识. Custom content-type var fileExtensionContentTypeProvider = new FileExtensionContentTyp ...