快速开始

DashText,是向量检索服务DashVector推荐使用的稀疏向量编码器(Sparse Vector Encoder),DashText可通过BM25算法将原始文本转换为稀疏向量(Sparse Vector)表达,通过DashText可大幅度简化使用DashVector[关键词感知检索]能力。

说明

  1. 需要使用您的api-key替换示例中的YOUR_API_KEY、您的Cluster Endpoint替换示例中的YOUR_CLUSTER_ENDPOINT,代码才能正常运行。

  2. 本示例仅对Sparse Vector进行功能演示,请根据实际情况设置您的向量维度。简化起见,本文示例代码中将向量(Dense Vector)维度设置为4。

Step1. 创建支持Sparse Vector的Collection

Python示例

import dashvector

client = dashvector.Client(api_key='YOUR_API_KEY', endpoint='YOUR_CLUSTER_ENDPOINT')
assert client ret = client.create('hybrid_collection', dimension=4, metric='dotproduct')
assert ret collection = client.get('hybrid_collection')
assert collection

Java示例

import com.aliyun.dashvector.DashVectorClient;
import com.aliyun.dashvector.DashVectorCollection;
import com.aliyun.dashvector.models.requests.CreateCollectionRequest;
import com.aliyun.dashvector.models.responses.Response;
import com.aliyun.dashvector.proto.CollectionInfo; DashVectorClient client =
new DashVectorClient("YOUR_API_KEY", "YOUR_CLUSTER_ENDPOINT"); CreateCollectionRequest request = CreateCollectionRequest.builder()
.name("hybrid_collection")
.dimension(4)
.metric(CollectionInfo.Metric.dotproduct)
.dataType(CollectionInfo.DataType.FLOAT)
.build(); Response<Void> response = client.create(request);
System.out.println(response); DashVectorCollection collection = client.get("hybrid_collection");

重要

仅内积度量(metric='dotproduct')支持Sparse Vector功能

Step2. 创建SparseVectorEncoder

使用内置Encoder

Python示例

from dashtext import SparseVectorEncoder

encoder = SparseVectorEncoder.default()

Java示例

import com.aliyun.dashtext.encoder.SparseVectorEncoder;

SparseVectorEncoder encoder = SparseVectorEncoder.getDefaultInstance();

说明

内置Encoder使用中文Wiki语料进行训练,采用Jieba进行中文分词

基于自有语料创建Encoder

Python示例

from dashtext import SparseVectorEncoder

encoder = SparseVectorEncoder()

# (全部)自有语料
corpus = [
"向量检索服务DashVector基于阿里云自研的高效向量引擎Proxima内核,提供具备水平拓展能力的云原生、全托管的向量检索服务",
"DashVector将其强大的向量管理、向量查询等多样化能力,通过简洁易用的SDK/API接口透出,方便被上层AI应用迅速集成",
"从而为包括大模型生态、多模态AI搜索、分子结构分析在内的多种应用场景,提供所需的高效向量检索能力",
"简单灵活、开箱即用的SDK,使用极简代码即可实现向量管理",
"自研向量相似性比对算法,快速高效稳定服务",
"Schema-free设计,通过Schema实现任意条件下的组合过滤查询"
] # 基于自有语料训练Encoder
encoder.train(corpus)

Java示例

import com.aliyun.dashtext.encoder.SparseVectorEncoder;
import java.util.*; SparseVectorEncoder encoder = new SparseVectorEncoder(); //(全部)自有语料
List<String> corpus = Arrays.asList(
"向量检索服务DashVector基于阿里云自研的高效向量引擎Proxima内核,提供具备水平拓展能力的云原生、全托管的向量检索服务",
"DashVector将其强大的向量管理、向量查询等多样化能力,通过简洁易用的SDK/API接口透出,方便被上层AI应用迅速集成",
"从而为包括大模型生态、多模态AI搜索、分子结构分析在内的多种应用场景,提供所需的高效向量检索能力",
"简单灵活、开箱即用的SDK,使用极简代码即可实现向量管理",
"自研向量相似性比对算法,快速高效稳定服务",
"Schema-free设计,通过Schema实现任意条件下的组合过滤查询"
); // 基于自有语料训练Encoder
encoder.train(corpus);

说明

  1. 内置Encoder可直接使用,无需使用原始语料进行训练,使用起来更加方便,同时泛化能力较强。但面对原始语料中专业术语较多等场景,准确性偏弱

  2. 基于自有语料创建Encoder,需要预先根据(全部)原始语料进行训练,准确性较高,自有语料创建Encoder具体使用可参考进阶使用

  3. 用户需根据自身业务场景和需求来选择Encoder,对于特定领域(大量专属词汇)的场景推荐基于自有语料创建Encoder

Step3. 插入带有Sparse Vector的Doc

Python示例

from dashvector import Doc

document = "向量检索服务DashVector基于阿里云自研的高效向量引擎Proxima内核,提供具备水平拓展能力的云原生、全托管的向量检索服务。"
doc_sparse_vector = encoder.encode_documents(document) print(doc_sparse_vector)
# 基于内置Encoder的output:
# {380823393: 0.7262431704356519, 414191989: 0.7262431704356519, 565176162: 0.7262431704356519, 904594806: 0.7262431704356519, 1005505802: 0.7262431704356519, 1169440797: 0.8883757984694465, 1240922502: 0.7262431704356519, 1313971048: 0.7262431704356519, 1317077351: 0.7262431704356519, 1490140460: 0.7262431704356519, 1574737055: 0.7262431704356519, 1760434515: 0.7262431704356519, 2045788977: 0.8414146776926797, 2141666983: 0.7262431704356519, 2509543087: 0.7262431704356519, 3180265193: 0.7262431704356519, 3845702398: 0.7262431704356519, 4106887295: 0.7262431704356519} collection.insert(Doc(
id='A',
vector=[0.1, 0.2, 0.3, 0.4],
sparse_vector=doc_sparse_vector
))

Java示例

String document = "向量检索服务DashVector基于达摩院自研的高效向量引擎Proxima内核,提供具备水平拓展能力的云原生、全托管的向量检索服务。";
Map<Long, Float> sparseVector = encoder.encodeDocuments(document); System.out.println(sparseVector);
// 基于内置Encoder的output:
// {380823393: 0.7262431704356519, 414191989: 0.7262431704356519, 565176162: 0.7262431704356519, 904594806: 0.7262431704356519, 1005505802: 0.7262431704356519, 1169440797: 0.8883757984694465, 1240922502: 0.7262431704356519, 1313971048: 0.7262431704356519, 1317077351: 0.7262431704356519, 1490140460: 0.7262431704356519, 1574737055: 0.7262431704356519, 1760434515: 0.7262431704356519, 2045788977: 0.8414146776926797, 2141666983: 0.7262431704356519, 2509543087: 0.7262431704356519, 3180265193: 0.7262431704356519, 3845702398: 0.7262431704356519, 4106887295: 0.7262431704356519} Vector vector = Vector.builder().value(Arrays.asList(0.1f, 0.2f, 0.3f, 0.4f)).build(); // 构建带有Sparse Vector的Doc
Doc doc = Doc.builder()
.id("28")
.sparseVector(sparseVector)
.vector(vector)
.build(); // 插入带有Sparse Vector的Doc
Response<Void> response = collection.insert(InsertDocRequest.builder().doc(doc).build());

Step4. 关键词感知的向量检索

Python示例

query = "什么是向量检索服务?"
sparse_vector = encoder.encode_queries(query) print(sparse_vector)
# 基于内置Encoder的output:
# {1169440797: 0.2947158712590364, 2045788977: 0.7052841287409635} docs = collection.query(
vector=[0.1, 0.1, 0.1, 0.1],
sparse_vector=sparse_vector
)

Java示例

String query = "什么是向量检索服务?";

Map<Long, Float> sparseVector = encoder.encodeQueries(query);

System.out.println(sparseVector);
// 基于内置Encoder的output:
// {1169440797: 0.2947158712590364, 2045788977: 0.7052841287409635} Vector vector = Vector.builder().value(Arrays.asList(0.1f, 0.2f, 0.3f, 0.4f)).build(); // 构建QueryDocRequest
QueryDocRequest request = QueryDocRequest.builder()
.vector(vector)
.sparseVector(sparseVector)
.topk(100)
.includeVector(true)
.build(); Response<List<Doc>> response = collection.query(request);
System.out.println(response);

Step5. 基于权重的关键词+语义检索

Python示例

from dashtext import combine_dense_and_sparse

query = "什么是向量检索服务?"
sparse_vector = encoder.encode_queries(query) # 权重因子
alpha = 0.7
dense_vector = [0.1, 0.1, 0.1, 0.1]
scaled_dense_vector, scaled_sparse_vector = combine_dense_and_sparse(dense_vector, sparse_vector, alpha) docs = collection.query(
vector=scaled_dense_vector,
sparse_vector=scaled_sparse_vector
)

Java示例

String query = "什么是向量检索服务?";

Map<Long, Float> sparseVector = encoder.encodeQueries(query);

System.out.println(sparse_vector);
// 基于内置Encoder的output:
// {1169440797: 0.2947158712590364, 2045788977: 0.7052841287409635} Vector denseVector = Vector.builder().value(Arrays.asList(0.1f, 0.2f, 0.3f, 0.4f)).build(); // 通过alpha因子调整稠密向量和稀疏向量
float alpha = 0.1;
sparse_vector.forEach((key, value) -> sparse_vector.put(key, value * (1 - alpha)));
denseVector = Vector.builder().value(
denseVector.getValue().stream().map(number -> number.floatValue() * alpha).collect(Collectors.toList())
).build(); // 构建QueryDocRequest
QueryDocRequest request = QueryDocRequest.builder()
.vector(denseVector)
.sparseVector(sparseVector)
.topk(100)
.includeVector(true)
.build(); Response<List<Doc>> response = collection.query(request);
System.out.println(response);

说明

参数alpha是控制稠密向量距离和稀疏向量距离加权的权重因子,alpha=0.0表示只采用稀疏向量进行距离度量,alpha=1.0表示只采用稠密向量进行距离度量。

API参考

更多DashText API详情可参考:

DashText-快速开始的更多相关文章

  1. 快速构建H5单页面切换骨架

    在Web App和Hybrid App横行的时代,为了拥有更好的用户体验,单页面应用顺势而生,单页面应用简称`SPA`,即Single Page Application,就是只有一个HTML页面的应用 ...

  2. .net core快速上手

    2014年11月12日的Connect ();开发者活动上宣布将.NET堆栈基于MIT协议开源,并且提供开源保证,托管在Github上.当时的版本与最终目标相距甚远,然而有一点可以肯定的是,这是一个与 ...

  3. Web Api 入门实战 (快速入门+工具使用+不依赖IIS)

    平台之大势何人能挡? 带着你的Net飞奔吧!:http://www.cnblogs.com/dunitian/p/4822808.html 屁话我也就不多说了,什么简介的也省了,直接简单概括+demo ...

  4. SignalR快速入门 ~ 仿QQ即时聊天,消息推送,单聊,群聊,多群公聊(基础=》提升)

     SignalR快速入门 ~ 仿QQ即时聊天,消息推送,单聊,群聊,多群公聊(基础=>提升,5个Demo贯彻全篇,感兴趣的玩才是真的学) 官方demo:http://www.asp.net/si ...

  5. 快速搭建springmvc+spring data jpa工程

    一.前言 这里简单讲述一下如何快速使用springmvc和spring data jpa搭建后台开发工程,并提供了一个简单的demo作为参考. 二.创建maven工程 http://www.cnblo ...

  6. 如何快速优化手游性能问题?从UGUI优化说起

    WeTest 导读   本文作者从自身多年的Unity项目UI开发及优化的经验出发,从UGUI,CPU,GPU以及unity特有资源等几个维度,介绍了unity手游性能优化的一些方法.   在之前的文 ...

  7. Photoshop将普通照片快速制作二次元漫画风格效果

    今天为大家分享Photoshop将普通照片快速制作二次元漫画风格效果,教程很不错,对于喜欢漫画的朋友可以参考本文,希望能对大家有所帮助! 一提到日本动画电影,大家第一印象肯定是宫崎骏,但是日本除了宫崎 ...

  8. CRL快速开发框架系列教程十三(嵌套查询)

    本系列目录 CRL快速开发框架系列教程一(Code First数据表不需再关心) CRL快速开发框架系列教程二(基于Lambda表达式查询) CRL快速开发框架系列教程三(更新数据) CRL快速开发框 ...

  9. CRL快速开发框架系列教程十二(MongoDB支持)

    本系列目录 CRL快速开发框架系列教程一(Code First数据表不需再关心) CRL快速开发框架系列教程二(基于Lambda表达式查询) CRL快速开发框架系列教程三(更新数据) CRL快速开发框 ...

  10. CRL快速开发框架系列教程十一(大数据分库分表解决方案)

    本系列目录 CRL快速开发框架系列教程一(Code First数据表不需再关心) CRL快速开发框架系列教程二(基于Lambda表达式查询) CRL快速开发框架系列教程三(更新数据) CRL快速开发框 ...

随机推荐

  1. 洛谷P1209修理牛棚 Barn Repair

    [USACO1.3] 修理牛棚 Barn Repair 题目描述 在一个月黑风高的暴风雨夜,Farmer John 的牛棚的屋顶.门被吹飞了 好在许多牛正在度假,所以牛棚没有住满. 牛棚一个紧挨着另一 ...

  2. JavaWeb中的Tomcat,Servlet详解

    JavaWeb JavaWeb技术主要包括服务器技术(后端),如Tomcat,Servlet,JSP等待,以及客户端技术(前端)如HTML,CSS,JavaScript等等 Web服务器 Web服务器 ...

  3. OpenTiny HUICharts开源发布,带你了解一个简单、易上手的图表组件库

    摘要:目前 OpenTiny HUICharts 已经成功落地在华为内部100多个产品中,持续提升了用户的可视化体验. 本文分享自华为云社区<OpenTiny HUICharts 正式开源发布, ...

  4. VUE—CLI学习

    https://cli.vuejs.org/zh/guide/creating-a-project.html#vue-create 需要的自己来看吧 关于旧版本 Vue CLI 的包名称由 vue-c ...

  5. 嵌入式工程师到底要不要学习ARM汇编指令?arm学习文章汇总

    嵌入式工程师到底要不要学习ARM汇编指令? 网上搜索这个问题,答案很多,大部分的建议是不要学汇编,只要学C语言. 而一口君作为一个十几年经验的驱动工程师,个人认为,汇编语言还是需要掌握的,想要搞精.搞 ...

  6. 使用SiliconCloud快速体验SimpleRAG(手把手教程)

    SiliconCloud介绍 SiliconCloud 基于优秀的开源基础模型,提供高性价比的 GenAI 服务. 不同于多数大模型云服务平台只提供自家大模型 API,SiliconCloud上架了包 ...

  7. LaTeX 编译中文文档

    介绍 LaTeX 原生不支持中文.为了添加中文的功能,我们需要引入宏包.XeLaTeX 原生支持中文.不过由于默认使用的字体是英文字体,我们需要设置中文字体之后才能用.不过由于一些原因,在使用 LaT ...

  8. 【Mac + Appium + Java1.8(三)】之IOS自动化环境安装配置以及简单测试用例编写(模拟器、真机)

    前提条件: =========================================== 1.Xcode版本为Xcode10及以上2.Appium版本必须为1.9及以上,因为Xcode为10 ...

  9. FCA-FineBI最新版考试答案,全全全!!!

    FCA-FineBI最新版考试答案,全全全!!!-CSDN博客同博客​ Part.1:判断 第1题 判断题 「TODATE」函数或者「DATE」函数,可以将文本字段或数值字段转变成时间类型的字段.(得 ...

  10. CSS & JS Effect – Dialog Modal

    效果 参考: Youtube – Create a Simple Popup Modal Youtube – Create a Modal (Popup) with HTML/CSS and Java ...