python进行大乐透和双色球选号(LSTM预测和随机选号)
文章仅供参考学习
1.LSTM预测
首先去爬取数据
这个是爬取大乐透的,从07年爬到最新一期
import requests
from bs4 import BeautifulSoup
import csv # 目标URL
url = 'http://datachart.500.com/dlt/history/newinc/history.php?start=07001' # 发送HTTP请求
response = requests.get(url)
response.encoding = 'utf-8' # 确保编码正确 # 解析HTML内容
soup = BeautifulSoup(response.text, 'html.parser') # 定位包含开奖数据的表格体
tbody = soup.find('tbody', id="tdata") # 存储开奖数据的列表
lottery_data = [] # 遍历每一行数据
for tr in tbody.find_all('tr'):
tds = tr.find_all('td')
if tds:
# 提取数据并添加到列表
lottery_data.append([td.text for td in tds]) # 写入CSV文件
with open('dlt_lottery_data.csv', 'w', newline='', encoding='utf-8') as csvfile:
writer = csv.writer(csvfile)
# 写入标题行
# writer.writerow(['期号', '号码1', '号码2', '号码3', '号码4', '号码5', '号码6', '号码7'])
# 写入数据行
writer.writerows(lottery_data) print('数据抓取完成,并保存到dlt_lottery_data.csv文件中。')
下面是爬取双色球的
import requests
from bs4 import BeautifulSoup
import csv # 目标URL
url = f'http://datachart.500.com/ssq/history/newinc/history.php?start=07001' # 发送HTTP请求
response = requests.get(url)
response.encoding = 'utf-8' # 确保编码正确 # 解析HTML内容
soup = BeautifulSoup(response.text, 'html.parser') # 定位包含开奖数据的表格体
tbody = soup.find('tbody', id="tdata") # 存储开奖数据的列表
lottery_data = [] # 遍历每一行数据
for tr in tbody.find_all('tr'):
tds = tr.find_all('td')
if tds:
# 提取数据并添加到列表
lottery_data.append([td.text for td in tds]) # 写入CSV文件
with open('ssq_lottery_data.csv', 'w', newline='', encoding='utf-8') as csvfile:
writer = csv.writer(csvfile)
# 写入标题行
# writer.writerow(['期号', '号码1', '号码2', '号码3', '号码4', '号码5', '号码6', '号码7'])
# 写入数据行
writer.writerows(lottery_data) print('数据抓取完成,并保存到ssq_lottery_data.csv文件中。')
对爬取的数据进行处理
大乐透是5+2,双色球是6+1,两个不同,注意区分。
大乐透的
import csv import pandas as pd
def get_data(path):
r_data = []
b_data = []
with open(path, 'r') as file:
reader = csv.reader(file)
for row in reader:
r_data.append(list(map(lambda x: int(x), row[1:7])))
b_data.append(list(map(lambda x: int(x), row[7:8])))
r_data.reverse()
b_data.reverse()
return r_data, b_data def process_data():
p = r"./ssq_lottery_data.csv"
r_data, b_data = get_data(p)
# print(b_data)
return r_data, b_data if __name__ == '__main__': process_data()
下面是双色球的
import csv import pandas as pd
def get_data(path):
r_data = []
b_data = []
with open(path, 'r') as file:
reader = csv.reader(file)
for row in reader:
r_data.append(list(map(lambda x: int(x), row[1:7])))
b_data.append(list(map(lambda x: int(x), row[7:8])))
r_data.reverse()
b_data.reverse()
return r_data, b_data def process_data():
p = r"./ssq_lottery_data.csv"
r_data, b_data = get_data(p)
# print(b_data)
return r_data, b_data if __name__ == '__main__': process_data()
下面开始定义模型
# 定义 LSTM 模型
class LSTMModel(nn.Module):
def __init__(self, input_size, hidden_size, output_size, num_layers=1):
super(LSTMModel, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, output_size) def forward(self, x):
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device)
c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device) out, _ = self.lstm(x, (h0, c0))
out = self.fc(out[:, -1, :])
return out
对训练之前的数据进行标准化处理和转换成为tensor格式
def trans_process_data(seq_length):
r_data, b_data = process_data()
# print(r_data) # print(r_data)
r_data = np.array(r_data)
b_data = np.array(b_data)
# 转换为 PyTorch 张量
r_data = torch.tensor(r_data, dtype=torch.float32)
# 转换为 PyTorch 张量
b_data = torch.tensor(b_data, dtype=torch.float32) # 标准化
r_mean = r_data.mean(dim=0)
r_std = r_data.std(dim=0)
r_data = (r_data - r_mean) / r_std # 标准化
b_mean = b_data.mean(dim=0)
b_std = b_data.std(dim=0)
b_data = (b_data - b_mean) / b_std r_train = []
r_target = []
b_train = []
b_target = [] for i in range(len(r_data) - seq_length):
r_train.append(r_data[i:i + seq_length])
r_target.append(r_data[i + seq_length])
r_train = torch.stack(r_train)
r_target = torch.stack(r_target) for i in range(len(b_data) - seq_length):
b_train.append(b_data[i:i + seq_length])
b_target.append(b_data[i + seq_length])
b_train = torch.stack(b_train)
b_target = torch.stack(b_target)
# print(r_train)
return r_data, b_data, r_train, r_target, b_train, b_target, r_mean, r_std, b_mean, b_std
训练函数
def start_train(input_size, hidden_size, output_size, num_layers, train_data, target_data, num_epochs=100):
model = LSTMModel(input_size, hidden_size, output_size, num_layers)
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=0.05)
# 训练模型
for epoch in range(num_epochs):
model.train()
optimizer.zero_grad()
# 前向传播
outputs = model(train_data)
loss = criterion(outputs, target_data)
# 反向传播和优化
loss.backward()
optimizer.step()
if (epoch + 1) % 10 == 0:
print(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}')
if epoch == int(num_epochs/2):
optimizer = optim.Adam(model.parameters(), lr=0.01)
return model
预测函数
def start_predicted(model, predicted_data):
model.eval()
with torch.no_grad():
test_input = predicted_data.unsqueeze(0) # 使用最后seq_length个时间步作为输入
predicted = model(test_input)
# print("Predicted:", predicted)
return predicted
红球和篮球分开训练预测,开始两个训练预测
def start_all_train(hidden_size, num_layers, num_epochs, seq_length):
r_data, b_data, r_train, r_target, b_train, b_target, r_mean, r_std, b_mean, b_std = trans_process_data(seq_length)
# print(r_mean, r_std)
r_size = 5
r_model = start_train(r_size, hidden_size, r_size, num_layers, r_train, r_target, num_epochs)
predicted_data = r_data[-seq_length:]
r_predicted = start_predicted(r_model, predicted_data)
print("--------------------------bbbbb-------------------------------------------")
b_size = 2
b_model = start_train(b_size, hidden_size, b_size, num_layers, b_train, b_target, num_epochs)
predicted_data = b_data[-seq_length:]
b_predicted = start_predicted(b_model, predicted_data) print(r_predicted)
print(b_predicted) r_predicted = r_predicted * r_std + r_mean
b_predicted = b_predicted * b_std + b_mean print(r_predicted)
print(b_predicted) return r_predicted, b_predicted
完整代码
import os
import sys BASE_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append(BASE_DIR) from data_process import process_data
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np # 定义 LSTM 模型
class LSTMModel(nn.Module):
def __init__(self, input_size, hidden_size, output_size, num_layers=1):
super(LSTMModel, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, output_size) def forward(self, x):
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device)
c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device) out, _ = self.lstm(x, (h0, c0))
out = self.fc(out[:, -1, :])
return out def trans_process_data(seq_length):
r_data, b_data = process_data()
# print(r_data) # print(r_data)
r_data = np.array(r_data)
b_data = np.array(b_data)
# 转换为 PyTorch 张量
r_data = torch.tensor(r_data, dtype=torch.float32)
# 转换为 PyTorch 张量
b_data = torch.tensor(b_data, dtype=torch.float32) # 标准化
r_mean = r_data.mean(dim=0)
r_std = r_data.std(dim=0)
r_data = (r_data - r_mean) / r_std # 标准化
b_mean = b_data.mean(dim=0)
b_std = b_data.std(dim=0)
b_data = (b_data - b_mean) / b_std r_train = []
r_target = []
b_train = []
b_target = [] for i in range(len(r_data) - seq_length):
r_train.append(r_data[i:i + seq_length])
r_target.append(r_data[i + seq_length])
r_train = torch.stack(r_train)
r_target = torch.stack(r_target) for i in range(len(b_data) - seq_length):
b_train.append(b_data[i:i + seq_length])
b_target.append(b_data[i + seq_length])
b_train = torch.stack(b_train)
b_target = torch.stack(b_target)
# print(r_train)
return r_data, b_data, r_train, r_target, b_train, b_target, r_mean, r_std, b_mean, b_std def start_train(input_size, hidden_size, output_size, num_layers, train_data, target_data, num_epochs=100):
model = LSTMModel(input_size, hidden_size, output_size, num_layers)
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=0.05)
# 训练模型
for epoch in range(num_epochs):
model.train()
optimizer.zero_grad()
# 前向传播
outputs = model(train_data)
loss = criterion(outputs, target_data)
# 反向传播和优化
loss.backward()
optimizer.step()
if (epoch + 1) % 10 == 0:
print(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}')
if epoch == int(num_epochs/2):
optimizer = optim.Adam(model.parameters(), lr=0.01)
return model def start_predicted(model, predicted_data):
model.eval()
with torch.no_grad():
test_input = predicted_data.unsqueeze(0) # 使用最后seq_length个时间步作为输入
predicted = model(test_input)
# print("Predicted:", predicted)
return predicted def start_all_train(hidden_size, num_layers, num_epochs, seq_length):
r_data, b_data, r_train, r_target, b_train, b_target, r_mean, r_std, b_mean, b_std = trans_process_data(seq_length)
# print(r_mean, r_std)
r_size = 5
r_model = start_train(r_size, hidden_size, r_size, num_layers, r_train, r_target, num_epochs)
predicted_data = r_data[-seq_length:]
r_predicted = start_predicted(r_model, predicted_data)
print("--------------------------bbbbb-------------------------------------------")
b_size = 2
b_model = start_train(b_size, hidden_size, b_size, num_layers, b_train, b_target, num_epochs)
predicted_data = b_data[-seq_length:]
b_predicted = start_predicted(b_model, predicted_data) print(r_predicted)
print(b_predicted) r_predicted = r_predicted * r_std + r_mean
b_predicted = b_predicted * b_std + b_mean print(r_predicted)
print(b_predicted) return r_predicted, b_predicted if __name__ == '__main__':
hidden_size = 20
num_layers = 3
num_epochs = 1000
seq_length = 10 r_predicted, b_predicted = start_all_train(hidden_size, num_layers, num_epochs, seq_length)
# print(r_predicted)
# print(b_predicted)
2.随机预测
下面是随机选号预测
import random
import numpy as np from collections import Counter # 大乐透和双色球不一样
r_len = 5
r_num = 35 b_len = 2
b_num = 12 # 双色球
# r_len = 6
# r_num = 33
#
# b_len = 1
# b_num = 16 number = 100000000
li = [] li_r = []
li_b = []
for i in range(number): r_li = random.sample(range(1, r_num+1), r_len)
b_li = random.sample(range(1, b_num+1), b_len)
li_r.extend(r_li)
li_b.extend(b_li)
print(i) counter_li_r = Counter(li_r)
counter_li_b = Counter(li_b) most_common_li_r = counter_li_r.most_common(r_len)
most_common_li_b = counter_li_b.most_common(b_len)
most_common_li_r = list(map(lambda x: x[0], most_common_li_r))
most_common_li_b = list(map(lambda x: x[0], most_common_li_b))
most_common_li_r.sort()
most_common_li_b.sort() li = most_common_li_r
li.extend(most_common_li_b)
print("most: ", li) most_least_li_r = counter_li_r.most_common()[-r_len-1:-1]
most_least_li_b = counter_li_b.most_common()[-b_len-1:-1]
most_least_li_r = list(map(lambda x: x[0], most_least_li_r))
most_least_li_b = list(map(lambda x: x[0], most_least_li_b))
most_least_li_r.sort()
most_least_li_b.sort()
li = most_least_li_r
li.extend(most_least_li_b)
print("least: ", li)
好运来,恭喜中一等奖
python进行大乐透和双色球选号(LSTM预测和随机选号)的更多相关文章
- python 获取大乐透中奖结果
实现思路: 1.通过urllib库爬取http://zx.500.com/dlt/页面,并过滤出信息 2.将自己的买的彩票的号与开奖号进行匹配,查询是否中奖 3.将中奖结果发生到自己邮箱 caipia ...
- python模拟双色球大乐透生成算法
每天练习一段python代码,健康生活一辈子.晚上下班没事,打开电脑继续编写python代码!今天分享的一个是大家熟悉的双色球彩票的游戏,根据这个进行写的一个python算法,代码精简,肯定有bug, ...
- python—模拟生成双色球号和大乐透号
下边这个脚本,比较适合初级学习基本python语法用.但是,不精炼建议可参考https://www.cnblogs.com/Formulate0303/p/14031748.html的写法. 大乐透玩 ...
- Python实现双色球和大乐透摇奖
实现代码: # code by kadycui # 模块引用 import random def select(): print('\n') print('请选择彩票种类') print('双色球输入 ...
- c语言实现双色球和大乐透
头文件: #include<stdio.h> #include <stdlib.h> #include<string.h> #include <time.h& ...
- 基于SpringBoot WebMagic爬虫爬取大乐透双色球
大乐透网页地址:https://kjh.55128.cn/dlt-history-360.htm 双色球网页地址:https://kjh.55128.cn/ssq-history-120.htm ...
- Python生成随机验证码,大乐透号码
实例笔记之生成随机号码 扩展知识 - yield(生成器) 随机生成验证码 示例代码: import random # 导入标准模块中的random if __name__ == '__main__' ...
- 08 python学习笔记-随机生成大乐透号码(八)
1 #产生大乐透号码 2 #前区 1-32,5 后区 1-12,2 3 #1.前区从1-32中级取5个,后区再从1-12里面取2个 4 #01 02 03 04 5 def dlt(): #生成随机大 ...
- python 写一个生成大乐透号码的程序
""" 写一个生成大乐透号码的程序 生成随机号码:大乐透分前区号码和后区号码, 前区号码是从01-35中无重复地取5个号码, 后区号码是从01-12中无重复地取2个号码, ...
- 大乐透 Java随机码
package suijishu; import java.util.Random; // TODO Auto-generated method stub public class Xuanqi { ...
随机推荐
- [NET,C# ] Nuget包发布流程
1.新建一个.NET Core类库 2.新增一个方法,并编译项目 3.下载Nuget.exe,与刚才新建的类库放在同一目录下 下载地址:https://www.nuget.org/downloads ...
- vue 使用 application/x-www-form-urlencoded格式提交数据
const params = new URLSearchParams();//前端在传参时需要先新建一个URLSearchParams对象,然后将参数append到这个对象中 params.appen ...
- 【读书笔记】 深入理解JVM第三版 JVM 运行时数据区
JVM 内存管理 堆 (Heap)线程共享 方法区 (Method Area)线程共享 虚拟机栈(VM Stack) 线程私有 本地方法栈 (Native Method Stack)线程私有 程序计数 ...
- Windows修改电脑DNS
访问浏览器出现无法访问此页面,找不到DNS地址,则可以通过如下方式修改DNS 按下windows键+R键(两个键一起按) 出现下面窗口 输入control按回车键(Enter键)就会出现下面的窗口 D ...
- 如何使用vs将现有的项目或者文件夹(尤其是多层目录的)添加到项目中
在Visual Studio中将现有的项目或者文件夹(尤其是多层目录的)添加到项目解决方案中,步骤如下: 1.将现有项目或文件夹拷贝到指定目录下: 2.解决方案右上有个显示所有文件的按钮,如下图所示: ...
- 【狂神说Java】Java零基础学习笔记-异常
[狂神说Java]Java零基础学习笔记-异常 异常01:Error和Exception 什么是异常 实际工作中,遇到的情况不可能是非常完美的.比如:你写的某个模块,用户输入不一定符合你的要求.你的程 ...
- Zookeeper、Eureka、Consul、Nacos、Etcd全方位对比
前三篇博文分别记录了Eureka.Zookeeper.Consul三个服务中心,那么他们之前有何区别呢? 一: 因为不会同时存在或者同时满足C.A.P三个方面,所以只能存在cp,ap,ca三种体系, ...
- Nginx-总结列表
Nginx配置详解 Nginx实现前后端分离,反向代理.负载均衡 Nginx 专为性能优化而开发,性能是其最重要的考量,实现上非常注重效率 .它支持内核 Poll 模型,能经受高负载的考验,有报告表明 ...
- springboot之结合mybatis增删改查解析
1. 场景描述 本节结合springboot2.springmvc.mybatis.swagger2等,搭建一个完整的增删改查项目,希望通过这个基础项目,能帮忙朋友快速上手springboot2项目. ...
- HBase-3rowkey的设计
HBase表热点 1 什么是热点 检索habse的记录首先要通过row key来定位数据行. 当大量的client访问hbase集群的一个或少数几个节点,造成少数region server的读/写请求 ...