P7563 JOISC 2021 Day4 最悪の記者 4 (Worst Reporter 4)
P7563 JOISC 2021 Day4 最悪の記者 4 (Worst Reporter 4)
线段树合并好题,通过线段树合并特别的方式优化了树形 dp。
思路
根据图中的不等关系连边建图,不难发现最后的图将会是基环树森林和普通的树的森林,我们先考虑对于一棵树要怎么办。
将 \(h_i\) 离散化,\(m\) 为离散化上界,使用树形 dp。
设 \(f_{i,j}\) 为将 \(i\) 改成 \(j\) 使 \(i\) 的子树内满足不等关系的最小花费。
\]
这个 dp 是超时的,但是是正确的,我们考虑优化 dp 转移。
我们发现每个都加上 \(c_i\) 对我们操作有点麻烦,我们在最后求出答案是同一加上 \(\sum c_i\),将方程改为
\]
为什么这样操作呢?
由于转移只有区间最小值查询和减法操作,考虑线段树维护 \(f\) 值。
线段树的区间维护一个节点的状态的第二维,点取值维护对应区间的最小值,区间 \([l,r]\) 维护的是 \(\min_{l\leq i\leq r} f_{u,i}\)。
每个点开一棵肯定不现实,考虑线段树合并,每一次合并就相当于父亲和儿子做一次转移。
找区间最小值的区间是 \([j,m]\),合并树 \(u\) 和树 \(v\) 时,计 \(u_{min}\) 和 \(v_{min}\) 为各自的最小值(在区间 \([j,m]\) 内),对于节点 \(p\) 和 \(q\) 分类讨论 \(p+v_{min}\) 和 \(q+u_{min}\) 哪个最小(这里实际上和转移有关,可以钦定父子关系,从转移方程的角度分析),将较小值设置即可。
由于最小值右端点固定,启发性的先合并右子树,便于维护最小值。
对于每个点的初始更新,在 \([h_i,h_i]\) 出加上 \(-c_i\) 即可。
扩展到基环树,发现基环树的环上的点肯定是同一取值,且要么是 \(1\) 要么是环上取值。
那么先求出基环树的环上节点的 \(f\) 状态,最后枚举环上的点的取值即可。
CODE
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define lch(p) tree[p].lch
#define rch(p) tree[p].rch
const int maxn=2e5+5;
int rb;
struct linetree
{
int tot;
ll d1,d2;
struct treenode{int lch,rch;ll lazy,mi;}tree[maxn*57];
void push_down(int p)//下传懒标记
{
if(!tree[p].lazy) return ;
ll &lazy=tree[p].lazy;
if(lch(p)) tree[lch(p)].lazy+=lazy,tree[lch(p)].mi+=lazy;
if(rch(p)) tree[rch(p)].lazy+=lazy,tree[rch(p)].mi+=lazy;
lazy=0;
}
void updata(int p)
{
tree[p].mi=min(tree[lch(p)].mi,tree[rch(p)].mi);
}
void insert(int &p,int l,int r,int x,ll y)
{
if(l>x||r<x) return ;
if(!p) p=++tot;
if(l==r){tree[p].mi=y;return ;}
push_down(p);
int mid=(l+r)>>1;
insert(lch(p),l,mid,x,y);
insert(rch(p),mid+1,r,x,y);
updata(p);
}
ll qry(int p,int l,int r,int lx,int rx)//查询区间最小值
{
if(!p) return 0;
if(lx<=l&&r<=rx) return tree[p].mi;
if(lx>r||rx<l) return 0;
push_down(p);
int mid=(l+r)>>1;
return min(qry(lch(p),l,mid,lx,rx),qry(rch(p),mid+1,r,lx,rx));
}
void merge(int &p1,int p2,int l,int r)//合并
{
if(!p1&&!p2) return ;
if(!p1)
{
d2=min(d2,tree[p2].mi);
tree[p2].mi+=d1;
tree[p2].lazy+=d1;
p1=p2;
return ;
}
else if(!p2)
{
d1=min(d1,tree[p1].mi);
tree[p1].mi+=d2;
tree[p1].lazy+=d2;
return ;
}
if(l==r)
{
d1=min(d1,tree[p1].mi),d2=min(d2,tree[p2].mi);
if(tree[p1].mi+d2<=tree[p2].mi+d1){tree[p1].mi=tree[p1].mi+d2;}
else{tree[p1].mi=tree[p2].mi+d1;}
return ;
}
push_down(p1);
push_down(p2);
int mid=(l+r)>>1;
merge(rch(p1),rch(p2),mid+1,r);//启发式
merge(lch(p1),lch(p2),l,mid);
updata(p1);
}
void premrg(int &x,int y)
{
d1=d2=0;
merge(x,y,1,rb);
}
}T;
struct Edge
{
int tot;
int head[maxn];
struct edgenode{int to,nxt;}edge[maxn*2];
void add(int u,int v)
{
tot++;
edge[tot].to=v;
edge[tot].nxt=head[u];
head[u]=tot;
}
}E;
int n,tot;
int a[maxn],h[maxn],c[maxn],ind[maxn],d[maxn],dfn[maxn];
int rt[maxn],nt[maxn];
struct node{ll h,c;};
bool cmp(node a,node b){return a.h<b.h;}
vector<node>cr[maxn];
ll ans;
void pushcir(int u)//同一个环赋予同一编号
{
dfn[u]=tot;
cr[tot].push_back({h[u],c[u]});
if(!dfn[a[u]]) pushcir(a[u]);
}
void gtp()//找环
{
queue<int>que;
while(!que.empty()) que.pop();
for(int i=1;i<=n;i++) if(!ind[i]) que.push(i);
while(!que.empty())
{
int u=que.front();que.pop();
if(!--ind[a[u]]) que.push(a[u]);
}
for(int i=1;i<=n;i++)//可能有多个环,tot 是环数
if(!dfn[i]&&ind[i]) tot++,pushcir(i);
}
void dfs(int u)//求 u 的状态
{
for(int i=E.head[u];i;i=E.edge[i].nxt)
{
int v=E.edge[i].to;
dfs(v);
T.premrg(rt[u],rt[v]);//合并儿子和自己
}
T.insert(rt[u],1,rb,h[u],T.qry(rt[u],1,rb,h[u],rb)-c[u]);
//insert 更改区间 [h[u],h[u]] 的值
}
void calc()
{
for(int i=1;i<=n;i++) if(!ind[i]&&ind[a[i]])//求环的状态
dfs(i),T.premrg(nt[dfn[a[i]]],rt[i]);
for(int i=1;i<=tot;i++)
{
sort(cr[i].begin(),cr[i].end(),cmp);
ll cnt=T.tree[nt[i]].mi,sh=cr[i][0].h,sc=0;
for(node v:cr[i])
{
if(v.h==sh) sc+=v.c;
else
{
cnt=min(cnt,T.qry(nt[i],1,rb,sh,rb)-sc);
sh=v.h,sc=v.c;
}
}
cnt=min(cnt,T.qry(nt[i],1,rb,sh,rb)-sc);
ans+=cnt;
}
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d%d%d",&a[i],&h[i],&c[i]);
E.add(a[i],i);
ind[a[i]]++;
d[i]=h[i];
ans+=c[i];
}
sort(d+1,d+n+1);
rb=unique(d+1,d+n+1)-d-1;
for(int i=1;i<=n;i++) h[i]=lower_bound(d+1,d+rb+1,h[i])-d;//离散化
gtp();
calc();
printf("%lld",ans);
}
P7563 JOISC 2021 Day4 最悪の記者 4 (Worst Reporter 4)的更多相关文章
- LOJ#2882. 「JOISC 2014 Day4」两个人的星座(计算几何)
题面 传送门 题解 我们发现如果两个三角形相离,那么这两个三角形一定存在两条公切线 那么我们可以\(O(n^2)\)枚举其中一条公切线,然后可以暴力\(O(n^3)\)计算 怎么优化呢?我们可以枚举一 ...
- @loj - 3039@ 「JOISC 2019 Day4」蛋糕拼接 3
目录 @description@ @solution@ @accepted code@ @details@ @description@ 今天是 IOI 酱的生日,所以她的哥哥 JOI 君给她预定了一个 ...
- 「JOISC 2020 Day4」首都城市
题目 点这里看题目. 分析 做法比较容易看出来.我们对于每个城市,找出那些 " 如果这个城市在首都内,则必须在首都内的其它城市 " ,也就是为了让这个城市的小镇连通而必须选 ...
- 「JOISC 2014 Day4」两个人的星座
首先突破口肯定在三角形不交,考虑寻找一些性质. 引理一:两个三角形不交当且仅当存在一个三角形的一条边所在直线将两个三角形分为异侧 证明可以参考:三角形相离充要条件,大致思路是取两个三角形重心连线,将其 ...
- Solution -「JOISC 2021」古老的机器
\(\mathcal{Description}\) Link. 这是一道通信题. 对于长度为一个 \(n\),仅包含字符 X, Y, Z 的字符串 \(s\),将其中 \(n\) 个字符按 ...
- Solution -「JOISC 2021」「LOJ #3489」饮食区
\(\mathcal{Description}\) Link. 呐--不想概括题意,自己去读叭~ \(\mathcal{Solution}\) 如果仅有 1. 3. 操作,能不能做? ...
- Solution -「JOISC 2021」「LOJ #3495」聚会 2
\(\mathcal{Description}\) Link. 给定一棵含 \(n\) 个结点的树.称点集 \(S\) 到结点 \(u\) 的会合距离为 \(\sum_{v\in S}\ope ...
- Solution -「JOISC 2021」「LOJ #3491」道路建设
\(\mathcal{Description}\) Link. 平面上有 \(n\) 个互不重合的点 \((x_{1..n},y_{1..n})\),求其两两曼哈顿距离的前 \(m\) 小值. ...
- 「JOISC 2019 Day4」蛋糕拼接 3
loj 3039 NKOJ Description \(n\)个蛋糕,每个蛋糕有\(w_i,h_i\).选\(m\)个蛋糕满足\(\sum\limits_{j=1}^mw_{k_j}-\sum\lim ...
- Solution -「简单 DP」zxy 讲课记实
魔法题位面级乱杀. 「JOISC 2020 Day4」治疗计划 因为是不太聪明的 Joker,我就从头开始理思路了.中途也会说一些和 DP 算法本身有关的杂谈,给自己的冗长题解找借口. 首先,治疗方案 ...
随机推荐
- 技术如何通过API接口获取自己想要同款商品的数据
确定数据源: 首先,你需要确定哪些平台或服务提供商提供了你感兴趣的商品数据.例如,电商平台.品牌商.市场调研公司等. 了解API文档: 访问提供商的开发者门户网站,阅读API文档.文档会详细介绍如何使 ...
- Qemu - 介绍
Ref: QEMU支持3种运行模式 -- 理解 https://www.minitool.com/partition-disk/qemu-for-windows.html
- KernelWarehouse:英特尔开源轻量级涨点神器,动态卷积核突破100+ | ICML 2024
动态卷积学习n个静态卷积核的线性混合,加权使用它们输入相关的注意力,表现出比普通卷积更优越的性能.然而,它将卷积参数的数量增加了n倍,因此并不是参数高效的.这导致不能探索n>100的设置(比典型 ...
- HTML – Emmet Shortcut
前言 程序员就爱 hot key, 就爱 shortcut. 当然这里指的是不牺牲安全和结果的情况下用尽可能少的力气去做事情, 而不是那种 shortcut 了以后会翻车的. Emmet 就是专门写 ...
- Fluent Builder 模式
前言 以前最讨厌设计复杂方法调用, 就是那种需要一堆有逻辑规则的 config 作为参数的方法. 这种 config 通常是一个大对象, 有许多 property, property 之间有存在一些逻 ...
- Figma 学习笔记 – Interactive Components
参考: Input Field Interaction using Interactive Components in Figma Create interactive components with ...
- Vue中防抖和节流 --来自官方文档
Vue 没有内置支持防抖和节流,但可以使用 Lodash 等库来实现. 如果某个组件仅使用一次,可以在 methods 中直接应用防抖: <script src="https://un ...
- LeetCode 1819. 序列中不同最大公约数的数目(数论)
题目描述 给你一个由正整数组成的数组 nums . 数字序列的 最大公约数 定义为序列中所有整数的共有约数中的最大整数. 例如,序列 [4,6,16] 的最大公约数是 2 . 数组的一个 子序列 本质 ...
- Vue Cli 创建项目在 GitHub 部署 history 路由模式
1.修改打包路径 在 vue.config.js 中添加 publicPath 配置,其中 teambition-vue 是你项目的 github 名字.否则会找不到资源. module.expo ...
- idea创建搭建项目 maven eg
1. 创建一个空的项目 ps:作为 git 管理 ,父项目 2. 创建第一个微服务 先导入两个必要的组件 web spring web : spring cloud openfeign (用于微服务之 ...