在描述算法复杂度时,经常用到o(1), o(n), o(logn), o(nlogn)来表示对应算法的时间复杂度, 这里进行归纳一下它们代表的含义:
这是算法的时空复杂度的表示。不仅仅用于表示时间复杂度,也用于表示空间复杂度。
O后面的括号中有一个函数,指明某个算法的耗时/耗空间与数据增长量之间的关系。其中的n代表输入数据的量。
比如时间复杂度为O(n),就代表数据量增大几倍,耗时也增大几倍。比如常见的遍历算法。
再比如时间复杂度O(n^2),就代表数据量增大n倍时,耗时增大n的平方倍,这是比线性更高的时间复杂度。比如冒泡排序,就是典型的O(n^2)的算法,对n个数排序,需要扫描n×n次。
再比如O(logn),当数据增大n倍时,耗时增大logn倍(这里的log是以2为底的,比如,当数据增大256倍时,耗时只增大8倍,是比线性还要低的时间复杂度)。二分查找就是O(logn)的算法,每找一次排除一半的可能,256个数据中查找只要找8次就可以找到目标。
O(nlogn)同理,就是n乘以logn,当数据增大256倍时,耗时增大256*8=2048倍。这个复杂度高于线性低于平方。归并排序就是O(nlogn)的时间复杂度。
O(1)就是最低的时空复杂度了,也就是耗时/耗空间与输入数据大小无关,无论输入数据增大多少倍,耗时/耗空间都不变。 哈希算法就是典型的O(1)时间复杂度,无论数据规模多大,都可以在一次计算后找到目标(不考虑冲突的话)

o(1), o(n), o(logn), o(nlogn)算法复杂度的更多相关文章

  1. 【java】之算法复杂度o(1), o(n), o(logn), o(nlogn)

    在描述算法复杂度时,经常用到o(1), o(n), o(logn), o(nlogn)来表示对应算法的时间复杂度, 这里进行归纳一下它们代表的含义: 这是算法的时空复杂度的表示.不仅仅用于表示时间复杂 ...

  2. o(1), o(n), o(logn), o(nlogn)

    转自:https://blog.csdn.net/Mars93/article/details/75194138 在描述算法复杂度时,经常用到o(1), o(n), o(logn), o(nlogn) ...

  3. 【Algorithm】-NO.140.Algorithm.1.Algorithm.1.001-【空间复杂度 时间复杂度 o(1), o(n), o(logn), o(nlogn)】-

    Style:Mac Series:Java Since:2018-09-10 End:2018-09-10 Total Hours:1 Degree Of Diffculty:5 Degree Of ...

  4. (转载)o(1), o(n), o(logn), o(nlogn) 时间复杂度

    o(1), o(n), o(logn), o(nlogn) 时间复杂度的解释: https://blog.csdn.net/yhc166188/article/details/81162865 时间复 ...

  5. 时间复杂度o(1), o(n), o(logn), o(nlogn)

    1.时间复杂度o(1), o(n), o(logn), o(nlogn).算法时间复杂度的时候有说o(1), o(n), o(logn), o(nlogn),这是算法的时空复杂度的表示.不仅仅用于表示 ...

  6. Java基本知识点o(1), o(n), o(logn), o(nlogn)的了解

    在描述算法复杂度时,经常用到o(1), o(n), o(logn), o(nlogn)来表示对应算法的时间复杂度, 这里进行归纳一下它们代表的含义: 这是算法的时空复杂度的表示.不仅仅用于表示时间复杂 ...

  7. (转载)最长递增子序列 O(NlogN)算法

    原博文:传送门 最长递增子序列(Longest Increasing Subsequence) 下面我们简记为 LIS. 定义d[k]:长度为k的上升子序列的最末元素,若有多个长度为k的上升子序列,则 ...

  8. 最长上升子序列O(nlogn)算法详解

    最长上升子序列 时间限制: 10 Sec   内存限制:128 MB 题目描述 给定一个序列,初始为空.现在我们将1到N的数字插入到序列中,每次将一个数字插入到一个特定的位置.我们想知道此时最长上升子 ...

  9. 最长不下降子序列的O(n^2)算法和O(nlogn)算法

    一.简单的O(n^2)的算法 很容易想到用动态规划做.设lis[]用于保存第1~i元素元素中最长不下降序列的长度,则lis[i]=max(lis[j])+1,且num[i]>num[j],i&g ...

随机推荐

  1. 运用visual studio进行简单的单元测试

    昨天下午安装了visual studio,本打算晚上进行单元测试的,但当我再打开的时候就让我选择修复或卸载,修复完之后还是不能用,顿时觉得心好累啊,后来室友说要更新update5,点了更新之后就是无情 ...

  2. RabbitMQ None of the specified endpoints were reachable

    消息队列部署到服务器的时候,需要新增一个用户,然后一定要设置权限.参考一下 https://www.cnblogs.com/gossip/p/4573056.html

  3. Java认识对象

    一.类与对象 java中有基本类型和类类型两个类型系统.Java撰写程序几乎都在使用对象,要产生对象必须先定义类,类是对象的设计图,对象是类的实例 1.定义类 类定义使用的关键词为class,建立实例 ...

  4. django rest framework serializers小结

    注:转载至https://blog.csdn.net/l_vip/article/details/79156113 引言 serializers是什么?官网是这样的”Serializers allow ...

  5. MySQL5.7安装(RPM)笔记

    1. 检查MySQL是否安装,如果有安装,则移除(rpm –e 名称)[root@localhost ~]# rpm -qa | grep -i mysqlmysql-libs-xxxxxxxxxx. ...

  6. bzoj2456 mode (思路)

    不能把数存下来. 于是来打擂台,如果新数和他不相等,cnt--,否则cnt++.如果cnt<=0了,那个新数就来把它顶掉,然后把cnt重置成1 最后在台上的就是那个次数大于N/2的众数 (连&l ...

  7. luogu2678 [NOIp2015]跳石头 (二分答案+贪心)

    先二分出一个x,我们要算使最近的跳跃距离>=x的最少移除数量是否<=M就可以了 然后就别dp了...贪心就完事了...我肯定能不移就不移比较好... #include<bits/st ...

  8. 【bzoj2440】 中山市选2011—完全平方数

    http://www.lydsy.com/JudgeOnline/problem.php?id=2440 (题目链接) 题意 求第K个不含有完全平方因子的数 Solution 没想到莫比乌斯还可以用来 ...

  9. 输入一个十进制的数到dx_ax,然后十六进制转十进制输出

    ;HtoD data segment n dw ? data ends stack segment db dup(?) stack ends code segment assume cs:code,s ...

  10. Ansible Role

    Ansible Role 专题总揽 https://www.jianshu.com/p/1be92c3f65ec lework 关注 2017.03.02 12:57* 字数 629 阅读 1439评 ...