Tarjan求缩点化强连通图
Describe:
求一个有向图加多少条边可以变成一个强连通图
Solution:
Tarjan缩点染色后,判断出度和入度,所有点的出度 = 0 的和 和 入度 = 0 的和的最大值即为所求。
缩点染色
for(int i = 1;i <= n;++i)
{
if(!dfn[i])
{
tarjan(i);
}
}
void tarjan(int s)
{
dfn[s] = low[s] = ++tot;
stk[stk_siz++] = s;
instk[s] = true; for(int i = id[s];~i;i = e[i].pre)
{
int to = e[i].to;
if(!dfn[to])
{
tarjan(to);
low[s] = min(low[s],low[to]);
}
else if(instk[to])
low[s] = min(low[s],dfn[to]);
}
if(dfn[s] == low[s])
{
++colid;
while(stk_siz > 0 && stk[stk_siz] != s)
{
--stk_siz;
int tmp = stk[stk_siz];
instk[tmp] = false;
col[tmp] = colid;
}
}
}
进行每一个缩点后的出度入度判断
for(int i = 0;i < m;++i)
{
from = e[i].from;
to = e[i].to;
//咋忘了缩点了!!这是缩点后的操作
// cout<<from<<" "<<to<<endl;
// cout<<col[from]<<" "<<col[to]<<endl;
if(col[from] != col[to])
{
in[col[to]]++;
out[col[from]]++;
}
}
int ret = 0,innum = 0,outnum = 0;
for(int i = 1;i <= colid;++i)
{
if(!in[i])innum++;
if(!out[i])outnum++;
}
ret = max(innum,outnum);
还要注意的就是缩成一个点的时候,也就是本来就是一个强连通分量是不需要添加边的
Coding:
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
const int maxn = 2e4 + 1e3;
const int maxm = 5e4 + 1e3;
struct node{
int from,to,pre;
node(){}
node(int to,int pre):to(to),pre(pre){}
}e[maxm];
int colid;
int id[maxn],cnt;
int col[maxn];
int in[maxn],out[maxn];
int dfn[maxn],low[maxn];
int tot;
int stk[maxn],stk_siz; bool instk[maxn];
void add(int from,int to)
{
e[cnt].to = to;
e[cnt].from = from;
e[cnt].pre = id[from];
id[from] = cnt++;
}
void init()
{
memset(id,-1,sizeof(id));
memset(instk,0,sizeof(instk));
memset(dfn,0,sizeof(dfn));
memset(in,0,sizeof(in));
memset(out,0,sizeof(out));
cnt = tot = colid = stk_siz = 0;
}
void tarjan(int s)
{
dfn[s] = low[s] = ++tot;
stk[stk_siz++] = s;
instk[s] = true; for(int i = id[s];~i;i = e[i].pre)
{
int to = e[i].to;
if(!dfn[to])
{
tarjan(to);
low[s] = min(low[s],low[to]);
}
else if(instk[to])
low[s] = min(low[s],dfn[to]);
}
if(dfn[s] == low[s])
{
++colid;
while(stk_siz > 0 && stk[stk_siz] != s)
{
--stk_siz;
int tmp = stk[stk_siz];
instk[tmp] = false;
col[tmp] = colid;
}
}
}
int main()
{
int t,n,m;
scanf("%d",&t);
while(t--)
{
init();
scanf("%d%d",&n,&m);
int from,to;
for(int i = 1;i <= m;++i)
{
scanf("%d%d",&from,&to);
add(from,to);
}
for(int i = 1;i <= n;++i)
{
if(!dfn[i])
{
tarjan(i);
}
}
//边的存储是从1开始!!
for(int i = 0;i < m;++i)
{
from = e[i].from;
to = e[i].to;
//咋忘了缩点了!!这是缩点后的操作
// cout<<from<<" "<<to<<endl;
// cout<<col[from]<<" "<<col[to]<<endl;
if(col[from] != col[to])
{
in[col[to]]++;
out[col[from]]++;
}
}
int ret = 0,innum = 0,outnum = 0;
for(int i = 1;i <= colid;++i)
{
if(!in[i])innum++;
if(!out[i])outnum++;
}
ret = max(innum,outnum);
//特殊判断一下,一个点的时候(一种颜色的时候就是强连通了)
if(colid == 1)
printf("%d\n",0);
else
printf("%d\n",ret);
}
return 0;
}
Tarjan求缩点化强连通图的更多相关文章
- 【BZOJ3331】[BeiJing2013]压力 Tarjan求点双
[BZOJ3331][BeiJing2013]压力 Description 如今,路由器和交换机构建起了互联网的骨架.处在互联网的骨干位置的核心路由器典型的要处理100Gbit/s的网络流量.他们每天 ...
- tarjan求强连通分量+缩点+割点以及一些证明
“tarjan陪伴强联通分量 生成树完成后思路才闪光 欧拉跑过的七桥古塘 让你 心驰神往”----<膜你抄> 自从听完这首歌,我就对tarjan开始心驰神往了,不过由于之前水平不足,一 ...
- tarjan求强连通分量+缩点+割点/割桥(点双/边双)以及一些证明
“tarjan陪伴强联通分量 生成树完成后思路才闪光 欧拉跑过的七桥古塘 让你 心驰神往”----<膜你抄> 自从听完这首歌,我就对tarjan开始心驰神往了,不过由于之前水平不足,一 ...
- 连通分量模板:tarjan: 求割点 && 桥 && 缩点 && 强连通分量 && 双连通分量 && LCA(近期公共祖先)
PS:摘自一不知名的来自大神. 1.割点:若删掉某点后.原连通图分裂为多个子图.则称该点为割点. 2.割点集合:在一个无向连通图中,假设有一个顶点集合,删除这个顶点集合,以及这个集合中全部顶点相关联的 ...
- Tarjan求强连通分量,缩点,割点
Tarjan算法是由美国著名计算机专家发明的,其主要特点就是可以求强连通分量和缩点·割点. 而强联通分量便是在一个图中如果有一个子图,且这个子图中所有的点都可以相互到达,这个子图便是一个强连通分量,并 ...
- HDU 1827 Summer Holiday(tarjan求强连通分量+缩点构成新图+统计入度+一点贪心思)经典缩点入门题
Summer Holiday Time Limit: 10000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)T ...
- Tarjan求强联通分量+缩点
提到Tarjan算法就不得不提一提Tarjan这位老人家 Robert Tarjan,计算机科学家,以LCA.强连通分量等算法闻名.他拥有丰富的商业工作经验,1985年开始任教于普林斯顿大学.Tarj ...
- POJ 1236 Network of Schools (tarjan算法+缩点)
思路:使用tarjan求强连通分量并进行缩点,判断所有入度为0的点,这个点就是必须要给予文件的点,分别计算出度,入度为零的点的个数,取二者的最大值就是把这个图变成强连通需要加的边数. 一个取值需要讨论 ...
- UESTC 901 方老师抢银行 --Tarjan求强连通分量
思路:如果出现了一个强连通分量,那么走到这个点时一定会在强连通分量里的点全部走一遍,这样才能更大.所以我们首先用Tarjan跑一遍求出所有强连通分量,然后将强连通分量缩成点(用到栈)然后就变成了一个D ...
随机推荐
- Site.ForProductsOfApple
1. cultofmac http://www.cultofmac.com/ 2. imore http://www.imore.com/ 3. osxdaily http://osxdaily.co ...
- 简单使用DESeq2/EdgeR做差异分析
简单使用DESeq2/EdgeR做差异分析 Posted: 五月 07, 2017 Under: Transcriptomics By Kai no Comments DESeq2和EdgeR都 ...
- export export defalut
require/exports 和 import/export 形式不一样 require/exports 的用法只有以下三种简单的写法: const fs = require('fs') expor ...
- jsonp,ajax,json问题
JSONP技术 JSONP是解决跨域问题的一种常见方式 跨域问题,因为浏览器有同源策略,所以当不同域间进行数据交互的时候就会出现跨域问题 同源策略:只有在同协议.同域名.同端口的情况下才能进去数据交互 ...
- UI设计工资有多高?怎么快速拿高薪?
1.UI设计工资有多高? 有人不服UI设计待遇薪资高,那么下面就来看下一线城市的最新UI设计平均薪资待遇,大家也可以打开各招聘网站查询各行业平均薪资情况,一个行业的薪资高不高行业市场决定. 待遇较高说 ...
- 爬虫初窥day3:BeautifulSoup
信息提取 1.通过Tag对象的属性和方法 #!/usr/bin/python # -*- coding: utf- -*- from urllib.request import urlopen fro ...
- 含有选择器的 bootstrap菜单
var menu = new BootstrapMenu('#jsmind_container jmnode:not(.root)', { actions: [{ name: '展开节点', onCl ...
- 通过代理上网时,qq等应用程序连网出错
虽然现在基本上都用无线,有线宽带等,但是有时候还是避免不了通过代理上网时,于是就发生浏览器可以正常浏览网页,qq等应用程序连接出错等问题,上网搜了好长时间, 都没解决问题,后来慢慢琢磨(其实是乱 ...
- java 泛型: 通配符? 和 指定类型 T
1. T通常用于类后面和 方法修饰符(返回值前面)后面 ,所以在使用之前必须确定类型,即新建实例时要制定具体类型, 而?通配符通常用于变量 ,在使用时给定即可 ? extends A : 通配符上 ...
- jdk8 tomcat7
今天想使用jdk8+tomcat7来个写程序,但是一运行始终提示连接不到数据库 提示:Could not obtain connection metadata org.apache.tomcat.db ...