Tensorflow函数——tf.variable_scope()详解

https://blog.csdn.net/yuan0061/article/details/80576703

2018年06月05日 09:38:25 yuan0061 阅读数:2567
 

tf.variable_scope(name_or_scope,default_name=None,values=None,initializer=None,regularizer=None,caching_device=None,partitioner=None,custom_getter=None,reuse=None,dtype=None)

返回一个用于定义创建variable(层)的op的上下文管理器。

该上下文管理器验证(可选)值来自同一图形,确保图形是默认图形,并推送名称范围和variable范围。

如果name_or_scope不为None,则按原样使用。 如果范围为None,则使用default_name。 在这种情况下,如果以前在同一个范围内使用了相同的名称,那么它将会被唯一的附加到_N。

可变范围允许创建新的variable并分享已创建的variable,同时提供检查,不会意外创建或共享。 有关详细信息,请参阅可变范围如何操作,这里我们仅提供几个基本示例。

如何创建新variable的简单示例:

with tf.variable_scope("foo"):
with tf.variable_scope("bar"):
v = tf.get_variable("v", [1])
assert v.name == "foo/bar/v:0"
  • 1
  • 2
  • 3
  • 4
  • 1
  • 2
  • 3
  • 4

共享variable的基本示例:

with tf.variable_scope("foo"):
v = tf.get_variable("v", [1])
with tf.variable_scope("foo", reuse=True):
v1 = tf.get_variable("v", [1])
assert v1 == v
  • 1
  • 2
  • 3
  • 4
  • 5
  • 1
  • 2
  • 3
  • 4
  • 5

通过捕获范围并设置重用来共享variable:

with tf.variable_scope("foo") as scope:
v = tf.get_variable("v", [1])
scope.reuse_variables()
v1 = tf.get_variable("v", [1])
assert v1 == v
  • 1
  • 2
  • 3
  • 4
  • 5
  • 1
  • 2
  • 3
  • 4
  • 5

为了防止意外共享variable,当在非重用范围内获取现有variable时,我们引发异常。

with tf.variable_scope("foo"):
v = tf.get_variable("v", [1])
v1 = tf.get_variable("v", [1])
# Raises ValueError("... v already exists ...").
  • 1
  • 2
  • 3
  • 4
  • 1
  • 2
  • 3
  • 4

同样,当尝试获取在重用模式下不存在的variable时,我们引发异常。

with tf.variable_scope("foo", reuse=True):
v = tf.get_variable("v", [1])
# Raises ValueError("... v does not exists ...").
  • 1
  • 2
  • 3
  • 1
  • 2
  • 3

请注意,重用标志是继承的:如果我们打开一个重用的范围,那么它的所有子范围也会变得重用。

ARGS:

name_or_scope:string或VariableScope:要打开的范围。
default_name:如果name_or_scope参数为None,则将使用默认名称,此名称将被唯一。 如果提供了name_or_scope,它将不会被使用,因此它不是必需的,可以是None。
值:传递给op函数的Tensor参数列表。
初始化器:此范围内的变量的默认初始化程序。
regularizer:此范围内的变量的默认正则符。
caching_device:此范围内的变量的默认缓存设备。
partitioner:此范围内变量的默认分区。
custom_getter:此范围内变量的默认定制getter。
重用:True或None 如果是,我们进入该范围以及所有子范围的重用模式; 如果没有,我们只是继承父范围重用。
dtype:在此范围中创建的变量类型(默认为传递范围中的类型,或从父范围继承)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

返回:

可以捕获和重复使用的范围。

        <link rel="stylesheet" href="https://csdnimg.cn/release/phoenix/template/css/markdown_views-ea0013b516.css">
</div>

Tensorflow函数——tf.variable_scope()的更多相关文章

  1. Tensorflow函数——tf.placeholder()函数

    tf.placeholder()函数 Tensorflow中的palceholder,中文翻译为占位符,什么意思呢? 在Tensoflow2.0以前,还是静态图的设计思想,整个设计理念是计算流图,在编 ...

  2. Tensorflow函数——tf.set_random_seed(seed)

    设置图级随机seed. 依赖于随机seed的操作实际上从两个seed中获取:图级和操作级seed. 这将设置图级别的seed. 其与操作级seed的相互作用如下: 1.如果没有设置图形级别和操作see ...

  3. TensorFlow函数: tf.stop_gradient

    停止梯度计算. 在图形中执行时,此操作按原样输出其输入张量. 在构建计算梯度的操作时,这个操作会阻止将其输入的共享考虑在内.通常情况下,梯度生成器将操作添加到图形中,通过递归查找有助于其计算的输入来计 ...

  4. TensorFlow函数(三)tf.variable_scope() 和 tf.name_scope()

    tf.name_scope() 此函数作用是共享变量.在一个作用域scope内共享一些变量,简单来说,就是给变量名前面加个变量空间名,只限于tf.Variable()的变量 tf.variable_s ...

  5. tensorflow中共享变量 tf.get_variable 和命名空间 tf.variable_scope

    tensorflow中有很多需要变量共享的场合,比如在多个GPU上训练网络时网络参数和训练数据就需要共享. tf通过 tf.get_variable() 可以建立或者获取一个共享的变量. tf.get ...

  6. Tensorflow常用的函数:tf.cast

    1.tf.cast(x,dtype,name) 此函数的目的是为了将x数据,准换为dtype所表示的类型,例如tf.float32,tf.bool,tf.uint8等 example:  import ...

  7. TensorFlow函数教程:tf.nn.dropout

    tf.nn.dropout函数 tf.nn.dropout( x, keep_prob, noise_shape=None, seed=None, name=None ) 定义在:tensorflow ...

  8. 第三节,TensorFlow 使用CNN实现手写数字识别(卷积函数tf.nn.convd介绍)

    上一节,我们已经讲解了使用全连接网络实现手写数字识别,其正确率大概能达到98%,这一节我们使用卷积神经网络来实现手写数字识别, 其准确率可以超过99%,程序主要包括以下几块内容 [1]: 导入数据,即 ...

  9. TensorFlow函数:tf.truncated_normal

    tf.truncated_normal函数 tf.truncated_normal( shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, ...

随机推荐

  1. MySQL(Innodb)索引的原理

    引言 回想四年前,我在学习mysql的索引这块的时候,老师在讲索引的时候,是像下面这么说的 索引就像一本书的目录.而当用户通过索引查找数据时,就好比用户通过目录查询某章节的某个知识点.这样就帮助用户有 ...

  2. 关于vector变量的size,是一个无符号数引发的bug。LeetCode 3 sum

    class Solution { public: vector<vector<int>> threeSum(vector<int>& a) { vector ...

  3. Delphi与各数据库数据类型比较

    Delphi数据类型与各数据库数据类型对比如下表,如有具体说明见表中脚注: Delphi Type Oracle Types SQL Server Types MySQL Types [1] Inte ...

  4. 八皇后问题C语言解法

    偶遇八皇后问题,随即自己写了一个仅供参考 #include<stdio.h> #include<math.h> #define SIZE 8 void Circumsribe( ...

  5. Linux命令:findutils

    本篇介绍Linux中常用的文件查找和定位工具,包括:find.locate.which.xargs等. GNU find 命令参考<https://www.gnu.org/software/fi ...

  6. 【BUG记录】记一次游戏越来越卡的BUG

    U3D的MOBA项目,测试过程中,10分钟以后,游戏帧率开始缓慢下降,约3-5分钟后,由60帧下降到小于10帧,编辑器模式. 打开profiler,看到CPU占用非常高,每帧都有24K的GC, 时间占 ...

  7. Haskell语言学习笔记(73)Existentials

    Existentials(存在类型) Existentially quantified types(Existentially types,Existentials)是一种将一组类型归为一个类型的方式 ...

  8. 【378】python any() and all()

    Reference: [1] Python all() - Python Standard Library [2] Python any() - Python Standard Library all ...

  9. python模块os

    一.os模块概述 Python os模块包含普遍的操作系统功能.如果你希望你的程序能够与平台无关的话,这个模块是尤为重要的.(一语中的) 二.常用方法 1.os.name 输出字符串指示正在使用的平台 ...

  10. SSL和TLS协议的区别

    SSL:(Secure Socket Layer,安全套接字层),位于可靠的面向连接的网络层协议和应用层协议之间的一种协议层.SSL通过互相认证.使用数字签名确保完整性.使用加密确保私密性,以实现客户 ...