洛谷P4234 最小差值生成树(LCT,生成树)
和魔法森林有点像,都是动态维护最小生成树(可参考一下Blog的LCT总结相关部分)
至于从小到大还是从大到小当然无所谓啦,我是从小到大排序,每次枚举边,还没连通就连,已连通就替换环上最小的一条边,可以保证最优。如果已经构成了生成树,就可以更新答案,因为当前枚举到的一定是生成树里最大的,所以直接用当前减去最小更新答案。
至于最小的怎样维护,其实根本不需要什么别的set什么的数据结构。只要标记一下在生成树中的边,再搞一个指针指向在树中最小的边就好啦。当最小的边也被替换,就把指针后移,直到再找到一个在树中的边为止。
吐槽:注意了,有自环!!!我本来该1A却调试了2h,本地拿管理员的标程自造数据(没造自环)对拍几十万组无问题?!
卡常的地方挺多的,在LCT中应该算挺快的吧(比下面Niko巨佬的LCT代码快了\(1 \over 3\)左右,但是Niko巨佬写了个rank1的代码?!仔细看了下,是优化的暴力?貌似会被卡成\(O(NM)\)?!强烈建议再加强数据。。。。。。
#include<cstdio>
#include<algorithm>
using namespace std;
#define R register int
#define I inline void
#define lc c[x][0]
#define rc c[x][1]
#define in(z) ini=&z;\
while(*++q<'-');\
*ini=*q&15;\
while(*++q>'-')*ini*=10,*ini+=*q&15//读入卡常
const int N=50001,M=200009,L=N+M;
int f[L],c[L][2],mn[L],ff[N];
unsigned short v[L];//short卡常
bool r[L],vis[M];
char str[M<<6];
struct EDGE{
int u,v,l;
inline bool operator<(EDGE x)const{
return l<x.l;
}
}e[M];
inline bool nroot(R x){return c[f[x]][0]==x||c[f[x]][1]==x;}
inline int get(R x,R y){return v[x]<v[y]?x:y;}
I pushup(R x){mn[x]=get(x,get(mn[lc],mn[rc]));}
I pushdown(R x){
if(r[x]){
R t=lc;
r[lc=rc]^=1;r[rc=t]^=1;r[x]=0;
}
}
I pushall(R x){
if(nroot(x))pushall(f[x]);
pushdown(x);
}
I rotate(R x){
R y=f[x],z=f[y],k=c[y][1]==x,w=c[x][!k];
if(nroot(y))c[z][c[z][1]==y]=x;c[x][!k]=y;c[y][k]=w;
f[w]=y;f[y]=x;f[x]=z;
pushup(y);
}
I splay(R x){
R y=x;
pushall(x);
while(nroot(x)){
if(nroot(y=f[x]))
rotate((c[y][0]==x)^(c[f[y]][0]==y)?x:y);
rotate(x);
}
pushup(x);
}
I access(R x){
for(R y=0;x;x=f[y=x])
splay(x),rc=y,pushup(x);
}
I mroot(R x){
access(x);splay(x);
r[x]^=1;
}
I link(R i){//卡常版写法
mroot(e[i].u);
f[f[e[i].u]=N+i]=e[i].v;
}
I cut(R x){//也是卡常版写法
access(e[x-N].u);splay(x);
lc=rc=f[lc]=f[rc]=0;
}
int getf(R x){//并查集卡常
if(x==ff[x])return x;
return ff[x]=getf(ff[x]);
}
int main(){
fread(str,1,sizeof(str),stdin);//fread卡常
R n,m,i,x,y,h,cnt,ans,*ini;
register char*q=str-1;
in(n);in(m);
for(i=0;i<=n;++i)
ff[i]=i,v[i]=-1;
//-1放在unsigned里等于是极大值,注意v[0]也改了
for(i=1;i<=m;++i){
in(e[i].u);in(e[i].v);in(e[i].l);
}
sort(e+1,e+m+1);
for(cnt=h=i=1;i<=m;++i){
v[i+N]=e[i].l;
if(getf(x=e[i].u)!=getf(y=e[i].v))
{
vis[i]=1,link(i),ff[ff[x]]=ff[y],++cnt;
if(cnt==n)ans=e[i].l-e[h].l;
//刚完全建好生成树要马上更新答案
}
else{
if(x==y)continue;
vis[i]=1;
mroot(x);
access(y);splay(y);
vis[mn[y]-N]=0;while(!vis[h])++h;//维护好最小边
cut(mn[y]);link(i);
if(cnt==n)ans=min(ans,e[i].l-e[h].l);
}
}
printf("%d\n",ans);
return 0;
}
洛谷P4234 最小差值生成树(LCT,生成树)的更多相关文章
- 洛谷P4234 最小差值生成树(lct动态维护最小生成树)
题目描述 给定一个标号为从 11 到 nn 的.有 mm 条边的无向图,求边权最大值与最小值的差值最小的生成树. 输入输出格式 输入格式: 第一行两个数 n, mn,m ,表示图的点和边的数量. ...
- 【刷题】洛谷 P4234 最小差值生成树
题目描述 给定一个标号为从 \(1\) 到 \(n\) 的.有 \(m\) 条边的无向图,求边权最大值与最小值的差值最小的生成树. 输入输出格式 输入格式: 第一行两个数 \(n, m\) ,表示图的 ...
- 洛谷 P4234 最小差值生成树(LCT)
题面 luogu 题解 LCT 动态树Link-cut tree(LCT)总结 考虑先按边权排序,从小到大加边 如果构成一颗树了,就更新答案 当加入一条边,会形成环. 贪心地想,我们要最大边权-最小边 ...
- [洛谷P4234] 最小差值生成树
题目类型:\(LCT\)动态维护最小生成树 传送门:>Here< 题意:求一棵生成树,其最大边权减最小边权最小 解题思路 和魔法森林非常像.先对所有边进行排序,每次加边的时候删除环上的最小 ...
- 洛谷.4234.最小差值生成树(LCT)
题目链接 先将边排序,这样就可以按从小到大的顺序维护生成树,枚举到一条未连通的边就连上,已连通则(用当前更大的)替换掉路径上最小的边,这样一定不会更差. 每次构成树时更新答案.答案就是当前边减去生成树 ...
- 洛谷4234最小差值生成树 (LCT维护生成树)
这也是一道LCT维护生成树的题. 那么我们还是按照套路,先对边进行排序,然后顺次加入. 不过和别的题有所不同的是: 在本题中,我们需要保证LCT中正好有\(n-1\)条边的时候,才能更新\(ans\) ...
- P4234 最小差值生成树
题目 P4234 最小差值生成树 做法 和这题解法差不多,稍微变了一点,还不懂就直接看代码吧 \(update(2019.2):\)还是具体说一下吧,排序,直接加入,到了成环情况下,显然我们要把此边代 ...
- P4234 最小差值生成树 LCT维护边权
\(\color{#0066ff}{ 题目描述 }\) 给定一个标号为从 \(1\) 到 \(n\) 的.有 \(m\) 条边的无向图,求边权最大值与最小值的差值最小的生成树. \(\color{#0 ...
- 洛谷U19464 山村游历(Wander)(LCT,Splay)
洛谷题目传送门 LCT维护子树信息常见套路详见我的总结 闲话 题目摘自WC模拟试题(by Philipsweng),原题目名Wander,"山村游历"是自己搞出来的中文名. 数据自 ...
随机推荐
- stm32中assert_param的用法说明
stm32中assert_param的用法说明 首先是要知道条件判断语句 这个运算符分成三部分: (条件) ? (条件成立执行部分) :(条件不成立执行部分) 就这么简单 例如:a=(x>y ...
- C3P0配置实战
C3P0: 一个开源的JDBC连接池,它实现了数据源和JNDI绑定,支持JDBC3规范和JDBC2的标准扩展.目前使用它的开源项目有Hibernate,Spring等. 默认情况下(即没有配置连接池的 ...
- ISCSI target的两种安装方法
1 tgt程序架构 tgt是用户态实现的iscsi target,而iet(iscsi enterprise target)是在内核态实现的target,tgt相比于iet来说,因为其用户态实现,方便 ...
- springboot整合redis——redisTemplate的使用
一.概述 相关redis的概述,参见Nosql章节 redisTemplate的介绍,参考:http://blog.csdn.net/ruby_one/article/details/79141940 ...
- Luogu P2341 [HAOI2006]受欢迎的牛
这道题应该也是经典的SCC题了吧 印象中不知道在在班里上课的时候在紫书,ACM竞赛的那些书上看到多少次(有点奇怪) 首先思路很明显,就是要找出有多少个点,以它们为起点可以遍历整个图 首先考虑一种情况, ...
- Luogu P2577 [ZJOI2005]午餐
一道贪心+类背包DP的好题 首先发现一个十分显然的性质,没有这个性质整道题目都难以下手: 无论两队的顺序如何,总是让吃饭慢的人先排队 这是一个很显然的贪心,因为如果让吃饭慢的排在后面要更多的时间至少没 ...
- startActivity时报错Calling startActivity() from outside of an Activity context requires the FLAG_ACTIVI
原代码如下: Intent intent = new Intent(); intent.setClass(mContext, PhotoView.class); Bundle bundle = new ...
- Docker 部署学习
https://yeasy.gitbooks.io/docker_practice/basic_concept/repository.html https://hujb2000.gitbooks.io ...
- harbor使用和管理
一.上传本地镜像到harbor中 先在harbor 中创建testdocker 项目 因为我们本地没有镜像,我们先拉取一个镜像,然后进行下面的操作 查看nginx 镜像 2.下载nginx镜像到本地 ...
- 初学Direct X(7) ——位图的旋转,缩放以及平移
初学Direct X(7) --位图的旋转,缩放以及平移 本文旨在实现通过D3DXMatrixTransformation2D函数实现位图的旋转,缩放以及平移操作,但是具体的原理部分会在后面进一步的探 ...